Corollary 8.6.8.10. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets and let $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ be a contravariant transport representation for $U$. Then the induced map of homotopy categories $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}^{\operatorname{op}} \rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{QC}}}$ is isomorphic to the homotopy transport representation $\operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ of Construction 5.2.5.7..
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$