Proposition 8.6.8.9. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets, let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ be a diagram, and let $T: \operatorname{\mathcal{E}}\times _{\operatorname{\mathcal{C}}} \operatorname{Tw}(\operatorname{\mathcal{C}}^{\operatorname{op}} ) \rightarrow \int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F}$ exhibit $\mathscr {F}$ as a contravariant transport representation for $U$ (Remark 8.6.8.2). Then, for every edge $e: C \rightarrow C'$ of $\operatorname{\mathcal{C}}$, the diagram of $\infty $-categories
commutes up to isomorphism. Here the horizontal maps are the equivalences of Remark 8.6.8.2, $e^{\ast }$ is given by contravariant transport for the cartesian fibration $U$, and $e_{!}$ is given by covariant transport for the cocartesian fibration $\int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$.