Variant 8.1.7.14. Let $\operatorname{\mathcal{C}}$ be a simplicial set. Then the projection map $\lambda _{-}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ determines a morphism of simplicial sets $\rho _{-}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Cospan}(\operatorname{\mathcal{C}})$. If $\sigma $ is an $n$-simplex of $\operatorname{\mathcal{C}}^{\operatorname{op}}$, which we display informally as a diagram
then $\rho _{-}(\sigma )$ is an $n$-simplex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ which is depicted informally by the diagram
If $\operatorname{\mathcal{C}}$ is an $\infty $-category, then $\rho _{-}$ restricts an equivalence $\operatorname{\mathcal{C}}^{\operatorname{op}} \hookrightarrow \operatorname{Cospan}^{\mathrm{iso}, \mathrm{all}}(\operatorname{\mathcal{C}})$, where $\operatorname{Cospan}^{\mathrm{iso}, \mathrm{all}}( \operatorname{\mathcal{C}})$ is the simplicial subset $\operatorname{Cospan}^{L,R}(\operatorname{\mathcal{C}}) \subseteq \operatorname{Cospan}(\operatorname{\mathcal{C}})$ where $L$ is the collection of isomorphisms in $\operatorname{\mathcal{C}}$, and $R$ is the collection of all morphisms of $\operatorname{\mathcal{C}}$.