Construction 8.1.3.1. Let $\operatorname{\mathcal{C}}$ be a simplicial set. For every integer $n \geq 0$, we let $\operatorname{Cospan}_{n}(\operatorname{\mathcal{C}})$ denote the collection of morphisms $\operatorname{Tw}( \Delta ^ n ) \rightarrow \operatorname{\mathcal{C}}$ in the category of simplicial sets. The construction $[n] \mapsto \operatorname{Cospan}_{n}(\operatorname{\mathcal{C}})$ depends functorially on the set $[n] = \{ 0 < 1 < \cdots < n \} $ as an object of the category $\operatorname{{\bf \Delta }}^{\operatorname{op}}$, and can therefore be viewed as a simplicial set. We will denote this simplicial set by $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ and refer to it as the simplicial set of cospans in $\operatorname{\mathcal{C}}$.
8.1.3 The Cospan Construction
Let $\operatorname{\mathcal{C}}_0$ be a category which admits pushouts. In ยง2.2.1, we introduced a $2$-category $\operatorname{Cospan}(\operatorname{\mathcal{C}}_0)$ having the same objects, where $1$-morphisms from $X$ to $Y$ in $\operatorname{Cospan}(\operatorname{\mathcal{C}}_0)$ are cospans from $X$ to $Y$: that is, diagrams $X \xrightarrow {f} B \xleftarrow {g} Y$ in the category $\operatorname{\mathcal{C}}_0$ (see Example 2.2.2.1). In this section, we introduce a generalization of this construction, which will allow us to replace the ordinary category $\operatorname{\mathcal{C}}_0$ by an $\infty $-category. More precisely, we will associate to every simplicial set $\operatorname{\mathcal{C}}$ a simplicial set $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ of cospans in $\operatorname{\mathcal{C}}$ (Construction 8.1.3.1). In the special case where $\operatorname{\mathcal{C}}= \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}_0)$ is the nerve of a category $\operatorname{\mathcal{C}}_0$ which admits pushouts, we show that $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ can be identified with the Duskin nerve of the $2$-category $\operatorname{Cospan}(\operatorname{\mathcal{C}}_0)$ (Corollary 8.1.3.15).
Remark 8.1.3.2. Let $n \geq 0$ be an integer. Then the simplicial set $\operatorname{Tw}( \Delta ^{n} )$ can be identified with the nerve of the partially ordered set $Q = \{ (i,j) \in [n]^{\operatorname{op}} \times [n]: i \leq j \} $ (see Example 8.1.0.5). Consequently, if $\operatorname{\mathcal{C}}$ is an arbitrary simplicial set, then $n$-simplices of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ can be identified with morphisms $\operatorname{N}_{\bullet }(Q) \rightarrow \operatorname{\mathcal{C}}$, which we depict informally as diagrams
Example 8.1.3.3. Let $\operatorname{\mathcal{C}}$ be a simplicial set. Then:
Vertices of the simplicial set $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ can be identified with vertices of $\operatorname{\mathcal{C}}$.
Let $X$ and $Y$ be vertices of $\operatorname{\mathcal{C}}$. Then edges of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ joining $X$ to $Y$ can be identified with pairs $(f,g)$, where $f: X \rightarrow B$ and $g: Y \rightarrow B$ are edges of $\operatorname{\mathcal{C}}$ having the same target.
Remark 8.1.3.4 (Symmetry). Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $\sigma $ be an $n$-simplex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$, which we identify with a morphism of simplicial sets $\operatorname{Tw}( \Delta ^{n} ) \rightarrow \operatorname{\mathcal{C}}$. Composing with the automorphism we obtain a new $n$-simplex $\overline{\sigma }$ of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$. The construction $\sigma \mapsto \overline{\sigma }$ determines an isomorphism of simplicial sets $\tau : \operatorname{Cospan}(\operatorname{\mathcal{C}}) \simeq \operatorname{Cospan}(\operatorname{\mathcal{C}})^{\operatorname{op}}$, which can be described concretely as follows:
For every vertex $X \in \operatorname{\mathcal{C}}$, the morphism $\tau $ carries $X$ (regarded as a vertex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$) to itself.
Let $X$ and $Y$ be vertices of $\operatorname{\mathcal{C}}$, and let $e: X \rightarrow Y$ be an edge of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$, given by a pair of edges $(f: X \rightarrow B, g: Y \rightarrow B)$ of $\operatorname{\mathcal{C}}$. Then $\tau (e): Y \rightarrow X$ is the edge of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ given by the pair $(g,f)$.
Note that $\tau $ is involutive: that is, the composition
is the identity automorphism of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$.
Construction 8.1.3.5. Let $\operatorname{\mathcal{D}}$ be a simplicial set and let $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{D}}$ be an $n$-simplex of $\operatorname{\mathcal{D}}$. Invoking the functoriality of the twisted arrow construction, we obtain a map $\operatorname{Tw}( \Delta ^{n} ) \xrightarrow { \operatorname{Tw}(\sigma ) } \operatorname{Tw}(\operatorname{\mathcal{D}})$, which we can identify with an $n$-simplex $u( \sigma )$ of the simplicial set $\operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$. The construction $\sigma \mapsto u(\sigma )$ is compatible with face and degeneracy operators, and therefore determines a morphism of simplicial sets $u: \operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$ which we will refer to as the unit map.
Example 8.1.3.6 (Tautological Cospans). Let $\operatorname{\mathcal{D}}$ be a simplicial set and let $e: X \rightarrow Y$ be an edge of $\operatorname{\mathcal{D}}$, which we also view as a vertex of the simplicial set $\operatorname{Tw}(\operatorname{\mathcal{D}})$. Then the morphism $\operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$ carries $e$ to an edge of the simplicial set $\operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$, which we can identify with a pair of edges in the simplicial set $\operatorname{Tw}(\operatorname{\mathcal{D}})$. Here $e_{L}$ and $e_{R}$ can be identified with degenerate $3$-simplices of $\operatorname{\mathcal{D}}$, which we depict informally in the diagrams
Proposition 8.1.3.7. Let $\operatorname{\mathcal{D}}$ be a simplicial set and let $u: \operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$ be the unit map of Construction 8.1.3.5. For every simplicial set $\operatorname{\mathcal{C}}$, the composite map is a bijection.
Proof. Let us regard the simplicial set $\operatorname{\mathcal{C}}$ as fixed. For every simplicial set $\operatorname{\mathcal{D}}$, the unit map $u$ of Construction 8.1.3.5 determines a function
Using Remark 8.1.1.4, we see that the construction $\operatorname{\mathcal{D}}\mapsto \theta _{\operatorname{\mathcal{D}}}$ carries colimits (in the category of simplicial sets) to limits (in the arrow category $\operatorname{Fun}( [1], \operatorname{Set})$). Consequently, to show that $\theta _{\operatorname{\mathcal{D}}}$ is a bijection, we may assume without loss of generality that $\operatorname{\mathcal{D}}= \Delta ^ n$ is a standard simplex (see Remark 1.1.3.13). In this case, the desired result follows immediately from the definition of the simplicial set $\operatorname{Cospan}(\operatorname{\mathcal{C}})$. $\square$
Corollary 8.1.3.8. The twisted arrow functor has a right adjoint, given on objects by the construction $\operatorname{\mathcal{C}}\mapsto \operatorname{Cospan}(\operatorname{\mathcal{C}})$.
Remark 8.1.3.9. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be simplicial sets. Using Proposition 8.1.3.7, we obtain bijections These bijections depend functorially on $[n] \in \operatorname{{\bf \Delta }}$, and therefore determine an isomorphism of simplicial sets $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Cospan}(\operatorname{\mathcal{D}}) ) \simeq \operatorname{Cospan}( \operatorname{Fun}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{D}}) )$.
Corollary 8.1.3.10. Let $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a Kan fibration of simplicial sets. Then the induced map $\operatorname{Cospan}(U): \operatorname{Cospan}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Cospan}(\operatorname{\mathcal{D}})$ is also a Kan fibration.
Proof. Let $i: A \hookrightarrow B$ be a monomorphism of simplicial sets which is a weak homotopy equivalence. We wish to show that every lifting problem
admits a solution. Using Proposition 8.1.3.7, we can rewrite (8.5) as a lifting problem of the form
Our assumption that $U$ is a Kan fibration guarantees that this lifting problem has a solution, since the monomorphism $\operatorname{Tw}(i): \operatorname{Tw}(A) \hookrightarrow \operatorname{Tw}(B)$ is also a weak homotopy equivalence (Corollary 8.1.2.6). $\square$
Corollary 8.1.3.11. Let $\operatorname{\mathcal{C}}$ be a Kan complex. Then the simplicial set $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ is also a Kan complex.
Proof. Apply Corollary 8.1.3.10 in the special case $\operatorname{\mathcal{D}}= \Delta ^0$. $\square$
We now study the relationship between Construction 8.1.3.1 with the classical cospan construction (Example 2.2.2.1).
Construction 8.1.3.12. Let $\operatorname{\mathcal{C}}$ be a category which admits pushouts, and let $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ denote the $2$-category of Example 2.2.2.1. Suppose we are given another category $\operatorname{\mathcal{D}}$ and a functor $F: \operatorname{Tw}(\operatorname{\mathcal{D}}) \rightarrow \operatorname{\mathcal{C}}$. We define a strictly unitary lax functor $F^{+}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}(\operatorname{\mathcal{C}})$ as follows:
For each $X \in \operatorname{\mathcal{D}}$, we define $F^{+}(X) = F( \operatorname{id}_{X} )$; here we regard the identity morphism $\operatorname{id}_ X: X \rightarrow X$ as an object of the twisted arrow category $\operatorname{Tw}(\operatorname{\mathcal{C}})$.
For each morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{D}}$, we define $F^{+}(f)$ to be the $1$-morphism of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ given by the cospan
Note that this determines the values of $F^{+}$ on $2$-morphisms, since every $2$-morphism in $\operatorname{\mathcal{D}}$ is an identity $2$-morphism.
For every pair of composable morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$ in $\operatorname{\mathcal{D}}$, the composition constraint $\mu _{g,f}: F^{+}(g) \circ F^{+}(f) \Rightarrow F^{+}(g \circ f)$ is the $2$-morphism of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ corresponding to the map $F(f) \amalg _{ F( \operatorname{id}_ Y) } F(g) \rightarrow F( g \circ f )$ classifying the commutative diagram
in the category $\operatorname{\mathcal{C}}$.
Example 8.1.3.13. Let $\operatorname{\mathcal{C}}$ be a category which admits pushouts and let $n$ be a nonnegative integer. Applying Construction 8.1.3.12 in the special case where $\operatorname{\mathcal{D}}= [n]$, we obtain a function Using Propositions 1.3.3.1 and 8.1.1.10, we can identify the left hand side with the collection of $n$-simplices of the simplicial set $\operatorname{Cospan}( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) )$. This construction depends functorially on $n$, and therefore determines a morphism of simplicial sets from $\operatorname{Cospan}( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) )$ to the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}( \operatorname{Cospan}(\operatorname{\mathcal{C}}) )$.
We can now formulate our main result.
Theorem 8.1.3.14. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be categories, where $\operatorname{\mathcal{C}}$ admits pushouts. Then Construction 8.1.3.12 induces a bijection of sets
Corollary 8.1.3.15. Let $\operatorname{\mathcal{C}}$ be a category which admits pushouts. Then the comparison map of Example 8.1.3.13 determines an isomorphism of simplicial sets
Exercise 8.1.3.16. Show that Corollary 8.1.3.15 implies Theorem 8.1.3.14. That is, to prove Theorem 8.1.3.14 in general, it suffices to treat the special case where $\operatorname{\mathcal{D}}$ is a category of the form $[n] = \{ 0 < 1 < \cdots < n\} $ for $n \geq 0$.
Remark 8.1.3.17. Let $\operatorname{\mathcal{C}}$ be a category which admits pushouts. The construction of the $2$-category $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ of Example 2.2.2.1 involves some auxiliary choices: if $X \rightarrow B \leftarrow Y$ and $Y \rightarrow C \leftarrow Z$ are cospans in $\operatorname{\mathcal{C}}$, then their composition (as $1$-morphisms of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$) is given by $X \rightarrow (B \amalg _{Y} C) \leftarrow Z$, where the pushout $B \amalg _{Y} C$ is only well-defined up to (canonical) isomorphism. Corollary 8.1.3.15 supplies a description of the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}( \operatorname{Cospan}(\operatorname{\mathcal{C}}) )$ which does not depend on these choices. This shows, in particular, that the $2$-category $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ is well-defined up to (non-strict) isomorphism; see Example 2.2.6.13.
Example 8.1.3.18. Let $\operatorname{\mathcal{C}}$ be a category which admits pushouts. Then $2$-simplices $\sigma $ of the Duskin nerve $\operatorname{N}_{\bullet }^{\operatorname{D}}( \operatorname{Cospan}(\operatorname{\mathcal{C}}) )$ can be identified with commutative diagrams in the category $\operatorname{\mathcal{C}}$. It follows from Theorem 2.3.2.5 that the $2$-simplex $\sigma $ is thin (in the sense of Definition 2.3.2.3) if and only if the square appearing in the diagram is a pushout: that is, it induces an isomorphism $X_{0,1} \amalg _{ X_{1,1} } X_{1,2} \rightarrow X_{0,2}$ in the category $\operatorname{\mathcal{C}}$.
Proof of Theorem 8.1.3.14. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be categories, where $\operatorname{\mathcal{C}}$ admits pushouts, and let $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}(\operatorname{\mathcal{C}})$ be a strictly unitary lax functor of $2$-categories. For every morphism $f: X \rightarrow Y$ in the category $\operatorname{\mathcal{D}}$, we can identify $G(f)$ with a cospan from $G(X)$ to $G(Y)$ in the category $\operatorname{\mathcal{C}}$, given by a diagram we will denote by $G(X) \xrightarrow { b_{-}(f) } B(f) \leftarrow { b_{+}(f) } G(Y)$. Our assumption that $G$ is strictly unitary guarantees the following:
- $(\ast )$
For each object $X \in \operatorname{\mathcal{D}}$, the object $B( \operatorname{id}_ X )$ is equal to $G(X)$, and the maps $b_{-}(\operatorname{id}_ X): G(X) \rightarrow B( \operatorname{id}_ X )$ and $b_{+}( \operatorname{id}_ X): G( X) \rightarrow B( \operatorname{id}_ X )$ are the identity morphisms from $G(X)$ to itself in the category $\operatorname{\mathcal{C}}$.
For every pair of composable $1$-morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$, the composition constraint $\mu _{g,f}$ for the lax functor $G$ can be identified with a morphism from the pushout $B(f) \amalg _{ G(Y) } B(g)$ to $B( g \circ f)$, or equivalently with a pair of morphisms
satisfying $p(g,f) \circ b_{+}(f) = q(g,f) \circ b_{-}(g)$. The axioms for a lax functor (Definition 2.2.4.5) then translate to the following additional conditions:
- $(a)$
For every morphism $f: X \rightarrow Y$ in the category $\operatorname{\mathcal{D}}$, $p( \operatorname{id}_ Y, f)$ is the identity morphism from $B(f)$ to itself.
- $(b)$
For every morphism $f: X \rightarrow Y$ in the category $\operatorname{\mathcal{D}}$, $q( f, \operatorname{id}_ X )$ is the identity morphism from $B(f)$ to itself.
- $(c)$
For every composable triple of $1$-morphisms $W \xrightarrow {f} X \xrightarrow {g} Y \xrightarrow {h} Z$ in the category $\operatorname{\mathcal{D}}$, we have
\[ p(h \circ g, f) = p( h, g \circ f) \circ p(g,f) \quad \quad q(h, g \circ f ) = q(h \circ g, f) \circ q(h,g) \]\[ p( h, g \circ f) \circ q(g,f) = q(h \circ g, f) \circ p( h, g). \]
We wish to show that there exists a unique functor of ordinary categories $F: \operatorname{Tw}(\operatorname{\mathcal{D}}) \rightarrow \operatorname{\mathcal{C}}$ such that $G = F^{+}$, where $F^{+}$ is the lax functor associated to $F$ by Construction 8.1.3.12. For this condition to be satisfied, the functor $F$ must satisfy the following conditions:
- $(0)$
For each object $X \in \operatorname{\mathcal{D}}$, we have $F( \operatorname{id}_ X ) = G(X)$ (this guarantees that $G$ and $F^{+}$ coincide on objects).
- $(1)$
For each morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{D}}$ (regarded as an object of $\operatorname{Tw}(\operatorname{\mathcal{D}})$), we have $F(f) = B(f)$, and the morphisms $b_{-}(f)$ and $b_{+}(f)$ are given by $F( \operatorname{id}_ X, f)$ and $F(f, \operatorname{id}_ Y)$, respectively (this guarantees that $G$ and $F^{+}$ coincide on $1$-morphisms, and therefore also on $2$-morphisms).
- $(2)$
For every pair of composable $1$-morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$, the morphisms $p(g,f): B(f) \rightarrow B(g \circ f)$ and $q(g,f): B(g) \rightarrow B(g \circ f)$ are given by $F(\operatorname{id}_ X,g): F(f) \rightarrow F(g \circ f)$ and $F(f, \operatorname{id}_ Z): F(g) \rightarrow F(g \circ f)$, respectively (this guarantees that the composition constraints on $G$ and $F^{+}$ coincide).
Note that the value of $F$ on each object of $\operatorname{Tw}(\operatorname{\mathcal{D}})$ is determined by condition $(1)$. Moreover, if $(u,v)$ is a morphism from $f: X \rightarrow Y$ to $f': X' \rightarrow Y'$ in the category $\operatorname{Tw}(\operatorname{\mathcal{D}})$, then condition $(2)$ guarantees that $F(u,v)$ must be equal to the composition
This proves the uniqueness of the functor $F$.
To prove existence, we define $F$ on objects $f$ of $\operatorname{Tw}(\operatorname{\mathcal{D}})^{\operatorname{op}}$ by the formula $F(f) = B(f)$, and on morphisms $(u,v): f \rightarrow f'$ by the formula $F(u,v) = p(v, f \circ u) \circ q(f,u)$. For any morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$, we can use $(a)$ and $(b)$ to compute
so that $F$ carries identity morphisms in $\operatorname{Tw}(\operatorname{\mathcal{D}})$ to identity morphisms in $\operatorname{\mathcal{C}}$. To complete the proof that $F$ is a functor, we note that for every pair of composable morphisms
in the twisted arrow category $\operatorname{Tw}(\operatorname{\mathcal{D}})$, the identities given in $(c)$ allow us to compute
We now complete the proof by showing that the functor $F$ satisfies conditions $(0)$, $(1)$, and $(2)$. Condition $(0)$ is an immediate consequence of $(\ast )$. To prove $(2)$, we note that for any pair of composable morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$ in $\operatorname{\mathcal{D}}$, identities $(a)$ and $(b)$ yield equalities
To prove $(1)$, we note that if $f: X \rightarrow Y$ is a morphism in $\operatorname{\mathcal{D}}$, then we have
and a similar calculation yields $F(f, \operatorname{id}_ Y) = b_{+}(f)$. $\square$