Example 8.1.3.6 (Tautological Cospans). Let $\operatorname{\mathcal{D}}$ be a simplicial set and let $e: X \rightarrow Y$ be an edge of $\operatorname{\mathcal{D}}$, which we also view as a vertex of the simplicial set $\operatorname{Tw}(\operatorname{\mathcal{D}})$. Then the morphism $\operatorname{\mathcal{D}}\rightarrow \operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$ carries $e$ to an edge of the simplicial set $\operatorname{Cospan}( \operatorname{Tw}(\operatorname{\mathcal{D}}) )$, which we can identify with a pair of edges
in the simplicial set $\operatorname{Tw}(\operatorname{\mathcal{D}})$. Here $e_{L}$ and $e_{R}$ can be identified with degenerate $3$-simplices of $\operatorname{\mathcal{D}}$, which we depict informally in the diagrams