$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Example Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote its homotopy category (Definition Let $W$ be a collection of edges of $\operatorname{\mathcal{C}}$, let $[W]$ denote the collection of morphisms in $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ which belong to the image of $W$, and let $F: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$ be a functor of ordinary categories which exhibits $\operatorname{\mathcal{D}}$ as a strict localization of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ with respect to $[W]$ (Definition If $\operatorname{\mathcal{E}}$ is an ordinary category, then we have a canonical isomorphism of simplicial sets

\[ \operatorname{Fun}( \operatorname{\mathcal{C}}[W^{-1}], \operatorname{N}_{\bullet }(\operatorname{\mathcal{E}}) ) \simeq \operatorname{N}_{\bullet }( \operatorname{Fun}(\operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) ). \]