Definition 6.3.1.9. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets and let $W$ be a collection of edges of $\operatorname{\mathcal{C}}$. We say that $F$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$ if, for every $\infty $-category $\operatorname{\mathcal{E}}$, the precomposition map $\operatorname{Fun}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) \xrightarrow { \circ F} \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is fully faithful, and its essential image is the full subcategory $\operatorname{Fun}(\operatorname{\mathcal{C}}[W^{-1}], \operatorname{\mathcal{E}}) \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$