Proposition 4.6.9.12 (Associativity). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $W$, $X$, $Y$, and $Z$. Then the diagram
4.70
\begin{equation} \begin{gathered}\label{equation:homotopy-composition-diagram} \xymatrix@R =50pt@C=30pt{ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(W,X) \ar [r]^-{\circ } \ar [d]^{\circ } & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(W,X) \ar [d]^{\circ } \\ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(W,Y) \ar [r]^-{\circ } & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(W,Z) } \end{gathered} \end{equation}
commutes (in the homotopy category of Kan complexes $\mathrm{h} \mathit{\operatorname{Kan}}$).