Notation 4.6.9.1. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing a (nonempty) finite sequence of vertices $X_0, X_1, \ldots , X_ n$. We let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_{0}, X_1, \cdots , X_ n)$ denote the simplicial set given by the fiber product
4.6.9 Composition of Morphisms
Let $\operatorname{\mathcal{C}}$ be an ordinary category. For every triple of objects $X, Y, Z \in \operatorname{Ob}(\operatorname{\mathcal{C}})$, the composition of morphisms in $\operatorname{\mathcal{C}}$ determines a map
Our goal in this section is to construct an analogous operation in the $\infty $-categorical setting. Here the situation is more subtle: as we saw in §1.4.4, a pair of morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in an $\infty $-category $\operatorname{\mathcal{C}}$ generally do not have a unique composition. Nevertheless, we will show that the mapping spaces of Construction 4.6.1.1 can be endowed with a composition law which is well-defined up to homotopy (and even up to a contractible space of choices). To describe this composition law, it will be convenient to introduce a generalization of Construction 4.6.1.1.
Example 4.6.9.2. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X_0$ and $X_1$. Then the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_0, X_1)$ of Notation 4.6.9.1 agrees with the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_0, X_1)$ of Construction 4.6.1.1. In particular, if $\operatorname{\mathcal{C}}$ is an $\infty $-category, then $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_0, X_1)$ is a Kan complex (Proposition 4.6.1.10).
Example 4.6.9.3. Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $X_0$ be a vertex of $\operatorname{\mathcal{C}}$. Then the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_0)$ of Notation 4.6.9.1 is isomorphic to $\Delta ^0$.
Let $\operatorname{\mathcal{C}}$ be a simplicial set containing a sequence of vertices $X_0, X_1, \ldots , X_ n$. For every pair of integers $0 \leq i < j \leq n$, precomposition with the edge $\Delta ^1 \simeq \operatorname{N}_{\bullet }( \{ i < j \} ) \hookrightarrow \Delta ^ n$ determines a restriction map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( X_0, X_1, \cdots , X_ n) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X_ i, X_ j)$.
Proposition 4.6.9.4. Let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of simplicial sets, and let $X_0, X_1, \ldots , X_ n$ be vertices of $\operatorname{\mathcal{C}}$ having images $\overline{X}_0, \overline{X}_1, \ldots , \overline{X}_ n \in \operatorname{\mathcal{D}}$. Then the restriction map is a trivial Kan fibration of simplicial sets.
Proof. Let $\operatorname{Spine}[n]$ denote the spine of the standard $n$-simplex $\Delta ^ n$ (see Example 1.5.7.7). Unwinding the definitions, we see that $\theta $ is a pullback of the restriction map
Since $q$ is an inner fibration and the inclusion $\operatorname{Spine}[n] \hookrightarrow \Delta ^ n$ is inner anodyne (Example 1.5.7.7), the morphism $\theta '$ is a trivial Kan fibration (Proposition 4.1.4.4). $\square$
Corollary 4.6.9.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $X_0, X_1, \ldots , X_ n$. Then the restriction map is a trivial Kan fibration of simplicial sets.
Example 4.6.9.6. Let $\operatorname{\mathcal{C}}$ be an ordinary category containing objects $X_0, X_1, \ldots , X_ n$, which we also regard as objects of the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. Then the restriction map is an isomorphism of (discrete) simplicial sets.
Remark 4.6.9.7. It follows from Corollary 4.6.9.5 that the construction endows the collection of objects of $\operatorname{\mathcal{C}}$ with the structure of a Segal category (see Definition ). We will return to this point in §.
Corollary 4.6.9.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every sequence of objects $X_0, X_1, \cdots , X_ n \in \operatorname{\mathcal{C}}$, the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_0, X_1, \cdots , X_ n)$ is a Kan complex.
Proof. Combine Corollary 4.6.9.5 with Proposition 4.6.1.10. $\square$
Construction 4.6.9.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $X$, $Y$, and $Z$. By virtue of Corollary 4.6.9.5, the restriction map is a trivial Kan fibration, so its homotopy class $[\theta ]$ is an isomorphism in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$. We let denote the morphism in $\mathrm{h} \mathit{\operatorname{Kan}}$ obtained by composing $[\theta ]^{-1}$ with (the homotopy class of) the restriction map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y,Z) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$. We will refer to $\circ $ as the composition law on the $\infty $-category $\operatorname{\mathcal{C}}$.
Remark 4.6.9.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $X$, $Y$, and $Z$. Then the composition law of Construction 4.6.9.9 induces a map of sets Concretely, this map is given by the construction $([g], [f]) \mapsto [h]$, where $h$ is a composition of $f$ and $g$ in the sense of Definition 1.4.4.1.
Proposition 4.6.9.11 (Unitality). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a pair of objects $X$ and $Y$. Then:
The composition
is equal to the identity (in the homotopy category of Kan complexes $\mathrm{h} \mathit{\operatorname{Kan}}$).
The composition
is equal to the identity (in the homotopy category of Kan complexes $\mathrm{h} \mathit{\operatorname{Kan}}$).
Proof. There is a diagram of Kan complexes
where the left diagonal arrow is induced by the map $\sigma ^0_{1}: [2] \rightarrow [1]$ of Construction 1.1.2.1 and the right diagonal arrow is induced by the map $\delta ^{1}_{2}: [1] \rightarrow [2]$ of Construction 1.1.1.4. Here the solid arrows are well-defined as morphisms of simplicial sets, while the dotted arrow is well-defined only as a morphism in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$. We now observe that the triangle on the left is strictly commutative, the triangle on the right commutes up to homotopy (by the construction of the composition law $\circ $). Assertion $(1)$ follows from the observation that the composition of the diagonal arrows is the identity on the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ (since $\sigma ^{0}_{1} \circ \delta ^{1}_{2}$ is the identity on the object $[1] \in \operatorname{{\bf \Delta }}$). Assertion $(2)$ follows by a similar argument. $\square$
Proposition 4.6.9.12 (Associativity). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $W$, $X$, $Y$, and $Z$. Then the diagram commutes (in the homotopy category of Kan complexes $\mathrm{h} \mathit{\operatorname{Kan}}$).
Proof. By virtue of Corollary 4.6.9.5, (4.70) is isomorphic to the diagram of restriction maps
which commutes in the category of simplicial sets (and therefore also in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$). $\square$
Construction 4.6.9.13 (The Enriched Homotopy Category). Let $\mathrm{h} \mathit{\operatorname{Kan}}$ denote the homotopy category of Kan complexes, which we endow with the monoidal structure given by cartesian products. To every $\infty $-category $\operatorname{\mathcal{C}}$, we define an $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ as follows:
The objects of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ are the objects of $\operatorname{\mathcal{C}}$.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the Kan complex $\underline{\operatorname{Hom}}_{ \mathrm{h} \mathit{\operatorname{\mathcal{C}}} }(X,Y)$ is the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ of Construction 4.6.1.1.
For every object $X \in \operatorname{\mathcal{C}}$, the unit map $\Delta ^{0} \rightarrow \underline{\operatorname{Hom}}_{\mathrm{h} \mathit{\operatorname{\mathcal{C}}}}(X,X)$ is the homotopy class of the inclusion $\{ \operatorname{id}_{X} \} \hookrightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,X)$.
For every triple of objects $X,Y,Z \in \operatorname{\mathcal{C}}$, the composition law
is given by Construction 4.6.9.9.
Note that this definition satisfies the axiomatics of Definition 2.1.7.1 by virtue of Propositions 4.6.9.11 and 4.6.9.12 We will refer to $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ as the enriched homotopy category of the $\infty $-category $\operatorname{\mathcal{C}}$.
Remark 4.6.9.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote the enriched homotopy category of $\operatorname{\mathcal{C}}$. Then $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ has an underlying category (Example 2.1.7.5), which we will also denote by $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$. Concretely, this category can be described as follows:
The objects of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ are the objects of $\operatorname{\mathcal{C}}$.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, we have
In other words, $\operatorname{Hom}_{\mathrm{h} \mathit{\operatorname{\mathcal{C}}}}(X,Y)$ can be identified with the set of homotopy classes of morphisms from $X$ to $Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$.
By virtue of Remark 4.6.9.10, the composition of morphisms in the category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ agrees with the composition law of Construction 1.4.5.1. In other words, we can identify $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ with the homotopy category constructed in §1.4.5.
Notation 4.6.9.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing objects $X$, $Y$, and $Z$. For every morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$, the composition law of Construction 4.6.9.9 restricts to a morphism of Kan complexes which is well-defined up to homotopy. Note that this morphism depends only on the homotopy class $[f]$ of the morphism $f$. We will denote this map by $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \xrightarrow { \circ [f]} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ and refer to it as precomposition with $f$. Similarly, for every morphism $g: Y \rightarrow Z$, the composition law of Remark 4.6.9.10 determines a homotopy class of morphisms $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow { [g] \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$, which we will refer to as postcomposition with $g$.
To describe the precomposition morphism of Notation 4.6.9.15 concretely, it is convenient to replace the morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z)$ by their right-pinched variants $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Z) = \operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Z\} $ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(Y,Z) = \operatorname{\mathcal{C}}_{Y/} \times _{\operatorname{\mathcal{C}}} \{ Z\} $, respectively (see Construction 4.6.5.1).
Proposition 4.6.9.16. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. For every object $Z \in \operatorname{\mathcal{C}}$, the diagram of Kan complexes commutes up to homotopy, where the vertical maps are the right-pinch inclusion morphisms of Construction 4.6.5.7.
Remark 4.6.9.17. In the situation of Proposition 4.6.9.16, the morphisms are homotopy equivalences, by virtue of Proposition 4.6.5.10. Moreover, the restriction map $\operatorname{\mathcal{C}}_{f/} \times _{\operatorname{\mathcal{C}}} \{ Z\} \rightarrow \operatorname{\mathcal{C}}_{Y/} \times _{\operatorname{\mathcal{C}}} \{ Z\} $ is a trivial Kan fibration (Corollary 4.3.6.14). Consequently, the precomposition map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \xrightarrow { \circ [f]} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ is characterized (up to homotopy) by the conclusion of Proposition 4.6.9.16.
Proof of Proposition 4.6.9.16. It will suffice to show that there exists a morphism of Kan complexes
for which the diagram
commutes (in the category of simplicial sets).
We first observe that there is a unique morphism of simplicial sets $e: \Delta ^2 \times \operatorname{\mathcal{C}}_{f/} \rightarrow \Delta ^1 \star \operatorname{\mathcal{C}}_{f/}$ with the property that $e|_{ \Delta ^1 \times \operatorname{\mathcal{C}}_{f/} }$ is given by projection onto the first factor, and $e|_{ \{ 2\} \times \operatorname{\mathcal{C}}_{f/} }$ is given by projection onto the second factor. Note that the composite map
can be identified with a morphism of simplicial sets $e': \operatorname{\mathcal{C}}_{f/} \rightarrow \operatorname{Fun}( \Delta ^2, \operatorname{\mathcal{C}})$. Unwinding the definition, we see that $e'$ restricts to a morphism of simplicial subsets
having the desired properties. $\square$
Corollary 4.6.9.18. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ and $g: X \rightarrow Z$ be morphisms of $\operatorname{\mathcal{C}}$, which we identify with objects of the coslice $\infty $-category $\operatorname{\mathcal{C}}_{X/}$. Then the morphism space $\operatorname{Hom}_{ \operatorname{\mathcal{C}}_{X/} }( f, g)$ can be identified with the homotopy fiber of the composition map $\operatorname{Hom}_{ \operatorname{\mathcal{C}}}(Y, Z ) \xrightarrow { \circ [f] } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ over the vertex $g \in \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$.
Proof. Using Proposition 4.6.9.16, we can replace the composition map $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \xrightarrow { \circ [f] } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ with the restriction map $\theta : \operatorname{\mathcal{C}}_{f/} \times _{\operatorname{\mathcal{C}}} \{ Z\} \rightarrow \operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Z\} $. The morphism $\theta $ is a left fibration (Corollary 4.3.6.12). Since the left-pinched morphism space $\operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Z\} = \operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Z)$ is a Kan complex (Proposition 4.6.5.5), it follows that $\theta $ is a Kan fibration (Corollary 4.4.3.8). In particular, the homotopy fiber of the composition map $\operatorname{Hom}_{ \operatorname{\mathcal{C}}}(Y, Z ) \xrightarrow { \circ [f] } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$ over the vertex $g$ can be identified with the fiber
which is homotopy equivalent to $\operatorname{Hom}_{\operatorname{\mathcal{C}}_{X/}}(f,g)$ by virtue of Proposition 4.6.5.10. $\square$
Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category, so that the homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ is an $\infty $-category (Theorem 2.4.5.1). In this case, the composition law of Construction 4.6.9.9 has a direct description:
Proposition 4.6.9.19. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, let $\theta _{X,Y}: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet } \rightarrow \operatorname{Hom}_{ \operatorname{N}_{\bullet }^{\operatorname{hc}} }(X,Y)$ denote the homotopy equivalence of Kan complexes supplied by Remark 4.6.8.6. Then, for every triple of objects $X,Y,Z \in \operatorname{\mathcal{C}}$, the diagram commutes in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$; here the lower horizontal map is the composition law of Construction 4.6.9.9.
Proof. We will show that there exists a morphism of Kan complexes
for which the diagram
is commutative.
Fix an integer $n \geq 0$. Let $\operatorname{\mathcal{E}}$ denote the simplicial category with object set $\operatorname{Ob}(\operatorname{\mathcal{E}}) = \{ x,y,z \} $ and morphism spaces given by
where the composition law $\operatorname{Hom}_{\operatorname{\mathcal{E}}}(y,z)_{\bullet } \times \operatorname{Hom}_{\operatorname{\mathcal{E}}}(x,y)_{\bullet } \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{E}}}(x,z)_{\bullet }$ is an isomorphism (so that $\operatorname{Hom}_{\operatorname{\mathcal{E}}}(x,z)_{\bullet }$ can be identified with the product $\Delta ^ n \times \Delta ^ n$). Note that there is a unique simplicial functor $F: \operatorname{Path}[ \Delta ^2 \times \Delta ^ n ]_{\bullet } \rightarrow \operatorname{\mathcal{E}}$ satisfying the following conditions:
On objects, the functor $F$ is given by the formula
\[ F(i,j) = \begin{cases} x & \text{ if $i=0$ } \\ y & \text{ if $i=1$} \\ z & \text{ if $i=2$.} \end{cases} \]Let $(i,j)$ and $(i',j')$ be vertices of $\Delta ^2 \times \Delta ^ n$ satisfying $i < i'$ and $j \leq j'$, so that there is a unique indecomposable morphism $u$ from $(i,j)$ to $(i', j')$ in the path category $\operatorname{Path}[ \Delta ^2 \times \Delta ^ n ]$ (given by the chain $\{ (i,j) < (i',j') \} $). If $i=0$ and $i' = 1$, then $F(u)$ is the vertex $j'$ of $\Delta ^ n = \operatorname{Hom}_{\operatorname{\mathcal{E}}}(x,y)_{\bullet }$. If $i = 1$ and $i' =2$, then $F(u)$ is the vertex $j'$ of $\Delta ^ n = \operatorname{Hom}_{\operatorname{\mathcal{E}}}(y,z)_{\bullet }$. If $i= 0$ and $i' = 2$, then $F(u)$ is the vertex $(j',j')$ of $\Delta ^ n \times \Delta ^ n = \operatorname{Hom}_{\operatorname{\mathcal{E}}}(x,z)_{\bullet }$.
Let $\sigma $ and $\tau $ be $n$-simplices of the Kan complexes $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( Y,Z)_{\bullet }$ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet }$, respectively. Then there is a unique simplicial functor $G_{\sigma ,\tau }: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ satisfying the following conditions:
On objects, the functor $G_{\sigma ,\tau }$ is given by $G_{\sigma ,\tau }(x) = X$, $G_{\sigma ,\tau }(y) = Y$, and $G_{\sigma ,\tau }(z) = Z$.
The induced map $\Delta ^ n = \operatorname{Hom}_{\operatorname{\mathcal{E}}}( x,y)_{\bullet } \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet }$ is the $n$-simplex $\tau $.
The induced map $\Delta ^ n = \operatorname{Hom}_{\operatorname{\mathcal{E}}}( y,z)_{\bullet } \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z)_{\bullet }$ is the $n$-simplex $\sigma $.
The composite simplicial functor
determines a morphism from $\Delta ^2 \times \Delta ^ n$ to the homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$, which can be identified with an $n$-simplex $\theta _{X,Y,Z}(\sigma ,\tau )$ of the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y,Z)_{\bullet }$. Allowing $n$ to vary, the construction $(\sigma ,\tau ) \mapsto \theta _{X,Y,Z}(\sigma ,\tau )$ determines a morphism of simplicial sets $\theta _{X,Y,Z}: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z)_{\bullet } \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet } \rightarrow \operatorname{Hom}_{ \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{\mathcal{C}})}(X,Y,Z)$ having the desired properties. $\square$
Corollary 4.6.9.20. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category, and let $U: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{ \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}}) }$ be the isomorphism of homotopy categories supplied by Proposition 2.4.6.9. Then the homotopy equivalences $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet } \rightarrow \operatorname{Hom}_{ \operatorname{N}_{\bullet }^{\operatorname{hc}} }(X,Y)$ of Remark 4.6.8.6 promote $U$ to an isomorphism of $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched categories. Here $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is endowed with the $\mathrm{h} \mathit{\operatorname{Kan}}$-enrichment of Remark 3.1.5.12 and $\mathrm{h} \mathit{ \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}}) }$ is endowed with the $\mathrm{h} \mathit{\operatorname{Kan}}$-enrichment of Construction 4.6.9.13.
Let $\operatorname{\mathcal{C}}$ be a differential graded category. For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, we let $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast }$ denote the chain complex of morphisms from $X$ to $Y$ and $\mathrm{K}( \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast } )$ the associated Eilenberg-MacLane space (Construction 2.5.6.3). In what follows, let us write
for the composition of the isomorphism $\mathrm{K}( \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast } ) \simeq \operatorname{Hom}^{\mathrm{L}}_{ \operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}}) }( X, Y)$ of Example 4.6.5.15 with the pinch inclusion morphism $\operatorname{Hom}^{\mathrm{L}}_{ \operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}}) }( X, Y) \hookrightarrow \operatorname{Hom}_{ \operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}}) }( X, Y)$ of Construction 4.6.5.7. We then have the following:
Proposition 4.6.9.21. Let $\operatorname{\mathcal{C}}$ be a differential graded category containing objects $X$, $Y$, and $Z$, so that the composition law induces a bilinear map of simplicial abelian groups (see Proposition 2.5.9.1). Then the diagram of Kan complexes commutes up to homotopy, where the bottom horizontal map is the composition law of Construction 4.6.9.9.
Remark 4.6.9.22. In the situation of Proposition 4.6.9.21, the morphisms $\rho _{Y,X}$, $\rho _{Z,Y}$, and $\rho _{Z,X}$ are homotopy equivalences (Proposition 4.6.5.10). Consequently, Proposition 4.6.9.21 determines the composition law on the $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched homotopy category of $\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$.
Proof of Proposition 4.6.9.21. Let $\operatorname{\mathcal{C}}^{\Delta }$ denote the underlying simplicial category of the differential graded category $\operatorname{\mathcal{C}}$ (Construction 2.5.9.2). By virtue of Exercise 4.6.8.4, we can identify (4.74) with the outer rectangle of a larger diagram
where middle horizontal map is given by the composition law of the $\infty $-category $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{\mathcal{C}}^{\Delta } )$. We now observe that the upper square commutes up to homotopy by virtue of Proposition 4.6.9.19, and the lower square commutes up to homotopy by the functoriality of Construction 4.6.9.9. $\square$