Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 6.3.0.3. Let $\operatorname{Kan}$ denote the category of Kan complexes and let $\mathrm{h} \mathit{\operatorname{Kan}}$ denote the homotopy category of Kan complexes (Construction 3.1.5.10). Then the quotient functor $\operatorname{Kan}\rightarrow \mathrm{h} \mathit{\operatorname{Kan}}$ exhibits $\mathrm{h} \mathit{\operatorname{Kan}}$ as a strict localization of $\operatorname{Kan}$ with respect to the collection of all homotopy equivalences (see Corollary 3.1.7.7).