Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 8.4.0.29. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a functor between categories and let $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ be the induced functor of opposite categories. Let $f: X \rightarrow Y$ be a morphism in the category $\operatorname{\mathcal{E}}$, which we identify with a morphism $f^{\operatorname{op}}: Y \rightarrow X$ in the opposite category $\operatorname{\mathcal{E}}^{\operatorname{op}}$. Then $f$ is $U$-cartesian if and only if $f^{\operatorname{op}}$ is $U^{\operatorname{op}}$-cocartesian.