Remark 11.5.0.110. Suppose we are given a pullback diagram of categories
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}' \ar [r]^-{V} \ar [d]^{U'} & \operatorname{\mathcal{E}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}' \ar [r] & \operatorname{\mathcal{C}}, } \]
and let $f: X \rightarrow Y$ be a morphism of the category $\operatorname{\mathcal{E}}'$. If $V(f)$ is a $U$-cartesian morphism of $\operatorname{\mathcal{E}}$, then $f$ is a $U'$-cartesian morphism of $\operatorname{\mathcal{E}}'$. Similarly, if $V(f)$ is a $U$-cocartesian morphism of $\operatorname{\mathcal{E}}$, then $f$ is a $U$-cocartesian morphism of $\operatorname{\mathcal{E}}'$.