Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 5.1.1.4. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $q: \operatorname{\mathcal{C}}\rightarrow \Delta ^0$ be the projection map, and let $e: X \rightarrow Y$ be a morphism in $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

  • The morphism $e$ is an isomorphism.

  • The morphism $e$ is $q$-cartesian.

  • The morphism $e$ is $q$-cocartesian.

This is a restatement of Theorem 4.4.2.6.