Remark 5.1.0.1. The entirety of the preceding discussion can be dualized. If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a morphism of simplicial sets, we will say that an edge $f$ of $\operatorname{\mathcal{E}}$ is $U$-cocartesian if it is $U^{\operatorname{op}}$-cartesian when viewed as an edge of the opposite simplicial set $\operatorname{\mathcal{E}}^{\operatorname{op}}$. We say that $U$ is a cocartesian fibration if the opposite functor $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is a cartesian fibration. For the sake of brevity, we will sometimes state our results only for cartesian fibrations (in which case there is always a counterpart for cocartesian fibrations, which can be obtained by passing to opposite simplicial sets).
5.1 Cartesian Fibrations
The goal in this section is to extend the theory of (co)cartesian fibrations to the setting of $\infty $-categories. The first step is to introduce an $\infty $-categorical analogue of Definition 5.0.0.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a functor between categories, and let $f: X \rightarrow Y$ be a morphism in $\operatorname{\mathcal{E}}$. By definition, $f$ is $U$-cartesian if and only if, for every morphism $h: W \rightarrow Y$ in $\operatorname{\mathcal{E}}$, every commutative diagram
in the category $\operatorname{\mathcal{C}}$ can be lifted uniquely to a commutative diagram
in the category $\operatorname{\mathcal{E}}$. Equivalently, the morphism $f$ is $U$-cartesian if and only if every lifting problem
has a unique solution, assuming that $\sigma _0$ carries the “final edge” $\operatorname{N}_{\bullet }( \{ 1 < 2 \} ) \subseteq \Lambda ^{2}_{2}$ to the morphism $f$.
In the $\infty $-categorical setting, it is unreasonable to ask for the lifting problem (5.2) to admit a unique solution. Instead, we should require that the collection of possible choices for $\sigma $ are, in some sense, parametrized by a contractible space. In §5.1.1, we formalize this idea by considering analogues of (5.2) for higher-dimensional simplices. If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is an arbitrary morphism of simplicial sets, we will say that an edge $f$ of $\operatorname{\mathcal{E}}$ is $U$-cartesian if every lifting problem
admits a solution, provided that $n \geq 2$ and $\sigma _0$ carries the “final edge” $\operatorname{N}_{\bullet }( \{ n-1 < n \} ) \subseteq \Lambda ^{n}_{n}$ to $f$ (Definition 5.1.1.1). In the special case where $\operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{C}}$ are the nerves of ordinary categories, this reduces to the classical definition of cartesian morphism (Corollary 5.1.2.2).
The definition of $U$-cartesian edge makes sense for any morphism of simplicial sets $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$. However, it has poor formal properties in general. We will be primarily interested in the case where $\operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{C}}$ are $\infty $-categories and $U$ is an inner fibration. Assume that these conditions are satisfied and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{E}}$, having image $\overline{f}: \overline{X} \rightarrow \overline{Y}$ in $\operatorname{\mathcal{D}}$. For every object $W \in \operatorname{\mathcal{E}}$ having image $\overline{W} = U(W) \in \operatorname{\mathcal{C}}$, composition with the homotopy class $[f]$ determines a commutative diagram
in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$, which (after suitable modifications on the left hand side) can be lifted to a commutative diagram in the category of simplicial sets. In §5.1.2, we show that $f$ is $U$-cartesian if and only if, for every object $W \in \operatorname{\mathcal{E}}$, the resulting lift is a homotopy pullback diagram of Kan complexes (Proposition 5.1.2.1). This has a number of pleasant consequences: for example, it implies that the collection of $U$-cartesian morphisms is closed under composition (for a stronger statement, see Corollary 5.1.2.4).
Suppose we are given a pullback diagram of simplicial sets
and let $f$ be an edge of $\operatorname{\mathcal{E}}'$. It follows immediately from the definitions that if $F(f)$ is $U$-cartesian, then $f$ is $U'$-cartesian (Remark 5.1.1.12). The converse holds when $U$ is a cartesian fibration (Remark 5.1.4.6), but is false in general. In §5.1.3, we address this point by introducing the more general notion of a locally $U$-cartesian edge of a simplicial set $\operatorname{\mathcal{E}}$ equipped with a map $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ (Definition 5.1.3.1).
Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. In §5.1.4 we study the situation where $\operatorname{\mathcal{E}}$ has “sufficiently many” $U$-cartesian edges in the following sense: for every vertex $Y \in \operatorname{\mathcal{E}}$, every edge $\overline{f}: \overline{X} \rightarrow U(Y)$ of $\operatorname{\mathcal{C}}$ can be lifted to a $U$-cartesian edge $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$. If this condition is satisfied, we say that $U$ is a cartesian fibration of simplicial sets. This definition has the following features:
A functor of ordinary categories $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cartesian fibration (in the sense of Definition 5.0.0.3) if and only if the induced functor of $\infty $-categories $\operatorname{N}_{\bullet }(U): \operatorname{N}_{\bullet }(\operatorname{\mathcal{E}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is a cartesian fibration (Example 5.1.4.2).
Every right fibration of simplicial sets $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cartesian fibration. Conversely, a cartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a right fibration if and only if every fiber of $U$ is a Kan complex (Proposition 5.1.4.15).
The collection of cartesian fibrations is closed under the formation of pullbacks (Remark 5.1.4.6) and composition (Proposition 5.1.4.14).
Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets and let $f: K \rightarrow \operatorname{\mathcal{E}}$ be any morphism of simplicial sets. Then the induced maps $\operatorname{\mathcal{E}}_{/f} \rightarrow \operatorname{\mathcal{C}}_{/(U \circ f)}$ and $\operatorname{\mathcal{E}}_{f/} \rightarrow \operatorname{\mathcal{C}}_{(U \circ f)/ }$ are cartesian fibrations (Propositions 5.1.4.18 and 5.1.4.20).
Suppose we are given a commutative diagram of $\infty $-categories
where $U$ and $V$ are isofibrations. Recall that, if $F$ is an equivalence of $\infty $-categories, then the induced map of fibers $F_{E}: \operatorname{\mathcal{C}}_{E} \rightarrow \operatorname{\mathcal{D}}_{E}$ is also an equivalence of $\infty $-categories for every object $E \in \operatorname{\mathcal{E}}$ (Corollary 4.5.2.32). The converse is false in general (Warning 4.5.2.33). Nevertheless, in §5.1.6 we show that the converse is true if we assume that $U$ is a cartesian fibration and that $F$ carries $U$-cartesian morphisms of $\operatorname{\mathcal{C}}$ to $V$-cartesian morphisms of $\operatorname{\mathcal{D}}$ (Theorem 5.1.6.1). In §5.1.7, we prove a counterpart of this result in the case where $\operatorname{\mathcal{E}}$ is not assumed to be an $\infty $-category (Proposition 5.1.7.15): in this case, $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ need not be $\infty $-categories, but it is still possible to show that $F$ is an equivalence of inner fibrations over $\operatorname{\mathcal{E}}$ (see Definition 5.1.7.1).
Structure
- Subsection 5.1.1: Cartesian Edges of Simplicial Sets
- Subsection 5.1.2: Cartesian Morphisms of $\infty $-Categories
- Subsection 5.1.3: Locally Cartesian Edges
- Subsection 5.1.4: Cartesian Fibrations
- Subsection 5.1.5: Locally Cartesian Fibrations
- Subsection 5.1.6: Fiberwise Equivalence
- Subsection 5.1.7: Equivalence of Inner Fibrations