Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 5.1.5.1. Let $q: X \rightarrow S$ be a morphism of simplicial sets. We say that $q$ is a locally cartesian fibration if the following conditions are satisfied:

$(1)$

The morphism $q$ is an inner fibration.

$(2)$

For every edge $\overline{e}: s \rightarrow t$ of the simplicial set $S$ and every vertex $z \in X$ satisfying $q(z) = t$, there exists a locally $q$-cartesian edge $e: y \rightarrow z$ of $X$ satisfying $q( e) = \overline{e}$.

We say that $q$ is a locally cocartesian fibration if it satisfies condition $(1)$ together with the following dual version of $(2)$:

$(2')$

For every edge $e: s \rightarrow t$ of the simplicial set $S$ and every vertex $y \in X$ satisfying $q(y) = s$, there exists a locally $q$-cocartesian edge $e: y \rightarrow z$ of $X$ satisfying $q( e ) = \overline{e}$.