Remark 5.1.5.4. Let $q: X \rightarrow S$ be a morphism of simplicial sets. Then $q$ is a locally cartesian fibration if and only if the opposite morphism $q^{\operatorname{op}}: X^{\operatorname{op}} \rightarrow S^{\operatorname{op}}$ is a locally cocartesian fibration.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$