Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. Then the projection maps
are interior fibrations.
The slice and coslice constructions of §4.3 provide many examples of interior fibrations of $(\infty ,2)$-categories.
Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. Then the projection maps are interior fibrations.
Warning 5.4.3.2. In the situation of Proposition 5.4.3.1, the projection maps are generally not inner fibrations of simplicial sets.
Remark 5.4.3.3. Let $\operatorname{\mathcal{C}}$ be a simplicial set. Then axioms $(3)$ and $(4)$ of Definition 5.4.1.1 can be stated as follows:
Let $X$ be any vertex of $\operatorname{\mathcal{C}}$ and let $q: \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}$ be the projection map. Then every degenerate edge of $\operatorname{\mathcal{C}}_{/X}$ is $q$-cocartesian.
Let $X$ be any vertex of $\operatorname{\mathcal{C}}$ and let $q': \operatorname{\mathcal{C}}_{X/} \rightarrow \operatorname{\mathcal{C}}$ be the projection map. Then every degenerate edge of $\operatorname{\mathcal{C}}_{X/}$ is $q'$-cartesian.
Note that $(3')$ and $(4')$ appear as special cases of the conclusion of Proposition 5.4.3.1.
Corollary 5.4.3.4. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. Then the simplicial sets $\operatorname{\mathcal{C}}_{f/}$ and $\operatorname{\mathcal{C}}_{/f}$ are $(\infty ,2)$-categories.
Proof. Combine Proposition 5.4.3.1 with Proposition 5.4.2.8. $\square$
Corollary 5.4.3.5. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category. For every pair of objects $X$ and $Y$, the pinched morphism spaces $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ of Construction 4.6.5.1 are $\infty $-categories.
Proof. By definition, the left-pinched morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}(X,Y)$ is the fiber over $Y$ of the projection map $\pi : \operatorname{\mathcal{C}}_{X/} \rightarrow \operatorname{\mathcal{C}}$. Since $\pi $ is an interior fibration (Proposition 5.4.3.1), each of its fibers is an $\infty $-category (Remark 5.4.2.5). A similar argument shows that $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$ is an $\infty $-category. $\square$
Warning 5.4.3.6. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category containing objects $X$ and $Y$. Then the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ of Construction 4.6.1.1 is generally not an $\infty $-category (see Warning 8.1.8.1).
Remark 5.4.3.7. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category containing $X$ and $Y$. We will see later that the $\infty $-category $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}( X, Y)$ is naturally equivalent to the opposite of the $\infty $-category $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}( X, Y)$ (Proposition ). When $\operatorname{\mathcal{C}}$ is the Duskin nerve of a $2$-category, we can do better: the $\infty $-category $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{L}}( X, Y)$ is isomorphic to the opposite of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}^{\mathrm{R}}(X,Y)$; see Example 4.6.5.13.
We will deduce Proposition 5.4.3.1 from the following more precise result:
Proposition 5.4.3.8. Let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets and let $f_0: K_0 \rightarrow \operatorname{\mathcal{C}}$ be the restriction of $f$ to a simplicial subset $K_0 \subseteq K$. Then every lifting problem admits a solution provided that $m \geq 2$ and one of the following additional conditions is satisfied:
The simplicial set $\operatorname{\mathcal{C}}$ is an $(\infty ,2)$-category, $i=0$, and the composition
is a degenerate edge of $\operatorname{\mathcal{C}}_{/f}$.
The integer $i$ satisfies $0 < i < m$ and the composite map
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
The integer $i$ is equal to $m$ and, for every vertex $x \in K$, the composite map
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
Proof. Unwinding the definitions, we can identify the diagram (5.38) with a morphism of simplicial sets
and we wish to show that $\overline{f}$ can be extended to a morphism $\Delta ^{m} \star K \rightarrow \operatorname{\mathcal{C}}$. Let $P$ be the collection of all pairs $(L,g)$, where $L$ is a simplicial subset of $K$ containing $K_0$ and $g: \Delta ^{m} \star L \rightarrow \operatorname{\mathcal{C}}$ is a morphism satisfying
We regard $P$ as a partially ordered set, with $(L, g) \leq (L', g')$ if $L$ is contained in $L'$ and $g = g'|_{\Delta ^ m \star L}$. The partially ordered set $P$ satisfies the hypotheses of Zorn's lemma and therefore admits a maximal element $(L_{\mathrm{max}}, g_{\mathrm{max}} )$. We will complete the proof by showing that $L_{\mathrm{max}} = K$ (so that $g_{\mathrm{max}}$ is the desired extension of $\overline{f}$). Suppose otherwise. Then there is some nondegenerate simplex $\rho : \Delta ^{n} \rightarrow K$ which is not contained in $L_{\mathrm{max}}$. Choosing $\rho $ so that $n$ is as small as possible, we may assume without loss of generality that $\rho $ carries the boundary $\operatorname{\partial \Delta }^ n$ into $L_{\mathrm{max}}$. Let $L' \subseteq K$ be the simplicial subset given by the union of $L_{\mathrm{max}}$ together with the image of $\rho $, so that $\rho $ determines a pushout diagram
We will show that $g_{\mathrm{max}}$ can be extended to a morphism of simplicial sets $g': \Delta ^{m} \star L' \rightarrow \operatorname{\mathcal{C}}$ satisfying $g'|_{ \Lambda ^{m}_{i} \star L'} = \overline{f}|_{ \Lambda ^{m}_{i} \star L'}$; thereby contradicting the maximality of $(L_{\mathrm{max}}, g_{\mathrm{max}} )$ and completing the proof of Proposition 5.4.3.8. Note that the composite maps
can be amalgamated to a morphism of simplicial sets
whose source can be identified with the horn $\Lambda ^{m+1+n}_{i} \subseteq \Delta ^{m+1+n}$ (Lemma 4.3.6.16). We wish to show that $\tau _0$ can be extended to a map
If $0 < i \leq m$, the desired extension exists because the composite map
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$ (by virtue of assumption $(b)$ when $i < m$ or $(c)$ in the case $i = m$). If $i=0$, then the desired extension exists because assumption $(a)$ guarantees that $\operatorname{\mathcal{C}}$ is an $(\infty ,2)$-category and the $2$-simplex
is left-degenerate. $\square$
Proof of Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. We will show that the projection map $q: \operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}$ is an interior fibration; the analogous assertion for the coslice simplicial set $\operatorname{\mathcal{C}}_{f/}$ follows by a similar argument. Let $m \geq 2$ and suppose that we are given a lifting problem
We wish to show that a solution exists under any of the following additional assumptions:
The integer $i$ is equal to zero and the restriction $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} ) }$ is a degenerate edge of $\operatorname{\mathcal{C}}_{/f}$.
The integer $i$ satisfies $0 < i < m$ and the composite map
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
The integer $i$ is equal to $m$ and the restriction $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ m-1 < m \} ) }$ is a degenerate edge of $\operatorname{\mathcal{C}}_{/f}$.
In cases $(a)$ and $(b)$, this follows immediately from Proposition 5.4.3.8. In case $(c)$, we observe that for every vertex $x \in K$, the composite map
is a left-degenerate $2$-simplex of $\operatorname{\mathcal{C}}$. Since $\operatorname{\mathcal{C}}$ is an $(\infty ,2)$-category, this degenerate $2$-simplex is thin, so that existence of the desired extension again follows from Proposition 5.4.3.8. $\square$
In the situation of Proposition 5.4.3.1, the interior fibration $\operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}$ behaves like a cartesian fibration (with the caveat that it need not be an inner fibration).
Proposition 5.4.3.9. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category, let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets, and let $q: \operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}$ be the projection map. Let $Y$ be an object of the $(\infty ,2)$-category $\operatorname{\mathcal{C}}_{/f}$, and let $\overline{u}: \overline{X} \rightarrow q(Y)$ be a morphism in the $(\infty ,2)$-category $\operatorname{\mathcal{C}}$. Then $\overline{u}$ can be lifted to a morphism $u: X \rightarrow Y$ of $\operatorname{\mathcal{C}}_{/f}$ with the following property:
For every vertex $z \in K$, the image of $u$ in $\operatorname{\mathcal{C}}_{/f(z)}$ is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
Remark 5.4.3.10. In the situation of Proposition 5.4.3.9, condition $(\ast )$ guarantees that $u$ is a $q$-cartesian morphism of $\operatorname{\mathcal{C}}_{/f}$ (this follows immediately from Proposition 5.4.3.8). In §5.4.4, we will prove the converse: every $q$-cartesian morphism of $\operatorname{\mathcal{C}}_{/f}$ satisfies condition $(\ast )$ (Corollary 5.4.4.2).
Proposition 5.4.3.9 is a special case of the following more general assertion:
Proposition 5.4.3.11. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category, let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets, and let $f_0: K_0 \rightarrow \operatorname{\mathcal{C}}$ be the restriction of $f$ to a simplicial subset $K_0 \subseteq K$. Let $q: \operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}_{/f_0}$ denote the projection map, and suppose we are given a lifting problem with the following property:
For every vertex $x \in K_0$, the composition
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
Then there exists an edge $\sigma : \Delta ^1 \rightarrow \operatorname{\mathcal{C}}_{/f}$ which solves the lifting problem problem (5.39) and which satisfies the following stronger version of $(\ast _0)$:
For every vertex $x \in K$, the composition
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
Proof. Arguing as in the proof of Proposition 5.4.3.8, we can reduce to the case where $K = \Delta ^ n$ is a standard simplex and $K_0 = \operatorname{\partial \Delta }^ n$ is its boundary. In this case, the lifting problem (5.39) determines a morphism of simplicial sets
whose source can be identified with the horn $\Lambda ^{n+2}_{1} \subseteq \Delta ^{n+2}$ (Lemma 4.3.6.16), and we wish to extend $\tau $ to an $(n+2)$-simplex of $\operatorname{\mathcal{C}}$. If $n > 0$, then the desired extension exists because $\tau _0$ carries $\operatorname{N}_{\bullet }( \{ 0 < 1 < 2 \} )$ to a thin $2$-simplex of $\operatorname{\mathcal{C}}$ (by virtue of assumption $(\ast _0)$). If $n = 0$, then our assumption that $\operatorname{\mathcal{C}}$ is an $(\infty ,2)$-category allows us to extend $\tau _0$ to a thin $2$-simplex of $\operatorname{\mathcal{C}}$. $\square$