Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. Then the projection maps
are interior fibrations.
Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. Then the projection maps
are interior fibrations.
Proof of Proposition 5.4.3.1. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. We will show that the projection map $q: \operatorname{\mathcal{C}}_{/f} \rightarrow \operatorname{\mathcal{C}}$ is an interior fibration; the analogous assertion for the coslice simplicial set $\operatorname{\mathcal{C}}_{f/}$ follows by a similar argument. Let $m \geq 2$ and suppose that we are given a lifting problem
We wish to show that a solution exists under any of the following additional assumptions:
The integer $i$ is equal to zero and the restriction $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} ) }$ is a degenerate edge of $\operatorname{\mathcal{C}}_{/f}$.
The integer $i$ satisfies $0 < i < m$ and the composite map
is a thin $2$-simplex of $\operatorname{\mathcal{C}}$.
The integer $i$ is equal to $m$ and the restriction $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ m-1 < m \} ) }$ is a degenerate edge of $\operatorname{\mathcal{C}}_{/f}$.
In cases $(a)$ and $(b)$, this follows immediately from Proposition 5.4.3.8. In case $(c)$, we observe that for every vertex $x \in K$, the composite map
is a left-degenerate $2$-simplex of $\operatorname{\mathcal{C}}$. Since $\operatorname{\mathcal{C}}$ is an $(\infty ,2)$-category, this degenerate $2$-simplex is thin, so that existence of the desired extension again follows from Proposition 5.4.3.8. $\square$