Proposition 5.5.3.13. The functor
is fully faithful.
Proposition 5.5.3.13. The functor
is fully faithful.
Proof. By virtue of Proposition 5.5.3.8 and Corollary 4.6.8.8, it will suffice to show that the construction $G \mapsto B_{\bullet }G$ determines a weakly fully faithful functor from $\mathbf{Group}$ (regarded as a constant simplicial category) to the simplicial category $\operatorname{Kan}_{\ast }$. In other words, we must show that for every pair of groups $G$ and $H$, the canonical map
is a homotopy equivalence of Kan complexes. In fact, we claim that $\theta $ is an isomorphism of simplicial sets. Let $BG$ denote the category having a single object $X$ with automorphism group $G$, and let $BH$ denote the category having a single object $Y$ with automorphism group $H$. Proposition 1.5.3.3 then supplies an isomorphism
Note that if $F,F': BG \rightarrow BH$ are functors and $\alpha : F \rightarrow F'$ is a natural transformation with the property that $\alpha _{X}: F(X) \rightarrow F'(X)$ is the identity morphism $\operatorname{id}_{Y}$, then the functors $F$ and $F'$ are equal and $\alpha $ is the identity transformation (since $X$ is the only object of the category $BG$). It follows that the fiber product category $\operatorname{Fun}(BG, BH) \times _{BH} \{ Y\} $ is discrete: that is, it has only identity morphisms. We conclude by observing that the set of objects of the category $\operatorname{Fun}(BG, BH) \times _{BH} \{ Y\} $ can be identified with the set of group homomorphisms from $G$ to $H$. $\square$