Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 5.5.4.7. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\infty $-categories. Then $F$ is an equivalence of $\infty $-categories (in the sense of Definition 4.5.1.10) if and only if it is an isomorphism in the $\infty $-category $\operatorname{\mathcal{QC}}$.