Remark 5.5.5.8 (Passage to the Homotopy Category). Let $\operatorname{Cat}_{\bullet }$ denote the simplicial category associated to the strict $2$-category $\mathbf{Cat}$ (see Example 2.4.2.8). For every pair of $\infty $-categories $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$, Corollary 1.5.3.5 supplies a comparison map
This construction is compatible with composition, and therefore determines a functor of simplicial categories
Passing to homotopy coherent nerves (and invoking Example 2.4.3.11), we obtain a functor of $(\infty ,2)$-categories
Stated more informally, the construction $\operatorname{\mathcal{C}}\mapsto \mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ determines a functor from the $(\infty ,2)$-category $\operatorname{ \pmb {\mathcal{QC}} }$ to the ordinary $2$-category $\mathbf{Cat}$.