5.5.5 The $(\infty ,2)$-Category of $\infty $-Categories
For some applications, it will be convenient to work with a variant of Construction 5.5.4.1, which retains information about non-invertible natural transformations of functors.
Construction 5.5.5.1 (The $(\infty ,2)$-Category of $\infty $-Categories). Let $\operatorname{Set_{\Delta }}$ denote the category of simplicial sets, endowed with the simplicial enrichment of Example 2.4.2.1. We let $\operatorname{\mathbf{QCat}}$ denote the full simplicial subcategory of $\operatorname{Set_{\Delta }}$ spanned by the (small) $\infty $-categories, which we can describe concretely as follows:
The objects of $\operatorname{\mathbf{QCat}}$ are (small) $\infty $-categories.
If $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty $-categories, then the simplicial set $\operatorname{Hom}_{\operatorname{\mathbf{QCat}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})_{\bullet }$ is the $\infty $-category of functors $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.
We let $\operatorname{ \pmb {\mathcal{QC}} }$ denote the homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{\mathbf{QCat}})$. We will refer to $\operatorname{ \pmb {\mathcal{QC}} }$ as the $(\infty ,2)$-category of $\infty $-categories.
Proposition 5.5.5.2. The simplicial set $\operatorname{ \pmb {\mathcal{QC}} }$ is an $(\infty ,2)$-category.
Proof.
For every pair of $\infty $-categories $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$, Theorem 1.5.3.7 guarantees that the simplicial set $\operatorname{Hom}_{\operatorname{\mathbf{QCat}}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})_{\bullet } = \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ is an $\infty $-category. The desired result is now a special case of Theorem 5.4.8.1.
$\square$
Variant 5.5.5.9. Let $\kappa $ be an uncountable cardinal. We let $\operatorname{ \pmb {\mathcal{QC}} }^{< \kappa }$ denote the full simplicial subset of $\operatorname{ \pmb {\mathcal{QC}} }$ spanned by those $\infty $-categories $\operatorname{\mathcal{C}}$ which are $\kappa $-small. Then $\operatorname{ \pmb {\mathcal{QC}} }^{< \kappa }$ is an $(\infty ,2)$-category, which we will refer to as the $(\infty ,2)$-category of essentially $\kappa $-small $\infty $-categories.