$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Remark Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a functor. By virtue of Proposition, a diagram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [d]^{U} \ar [r]^-{ \widetilde{\mathscr {F}} } & \operatorname{\mathcal{QC}}_{\operatorname{Obj}} \ar [d]^{V} \\ \operatorname{\mathcal{C}}\ar [r]^-{ \mathscr {F} } & \operatorname{\mathcal{QC}}} \]

witnesses $\mathscr {F}$ as a covariant transport representation for $U$ if and only if the induced map $\operatorname{\mathcal{E}}\rightarrow \int _{\operatorname{\mathcal{C}}} \mathscr {F}$ is an equivalence of $\infty $-categories. We will later extend this observation to the case where $\operatorname{\mathcal{C}}$ is a general simplicial set (Corollary