Example 5.6.5.4 (Left Covering Maps). Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a left covering map of simplicial sets and let $\operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \operatorname{Set}$ be the homotopy transport representation of $U$ (Example 5.2.5.3), so that $\operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ can be identified with a morphism of simplicial sets $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{Set})$. Combining Proposition 5.2.7.2 with Example 5.6.2.8, we obtain a canonical isomorphism of simplicial sets $\operatorname{\mathcal{E}}\simeq \int _{\operatorname{\mathcal{C}}} \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$, which exhibits $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ as a covariant transport representation of $U$ (in the sense of Definition 5.6.5.1).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$