Lemma 11.9.7.7. Let $n$ be a positive integer, let $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^ n$ be a cocartesian fibration of $\infty $-categories, and let $\operatorname{\mathcal{E}}_0 \subseteq \operatorname{\mathcal{E}}$ be the fiber product $\operatorname{\partial \Delta }^{n} \times _{\Delta ^ n} \operatorname{\mathcal{E}}$. Suppose we are given a diagram $\mathscr {F}_0: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{QC}}$ and a morphism $G_0: \operatorname{\mathcal{E}}_0 \rightarrow \int _{\operatorname{\partial \Delta }^ n} \mathscr {F}'$ which is an equivalence of cocartesian fibrations over $\operatorname{\partial \Delta }^ n$. Then there exists a functor $\mathscr {F}: \Delta ^ n \rightarrow \operatorname{\mathcal{QC}}$ satisfying $\mathscr {F}_0 = \mathscr {F}|_{\operatorname{\partial \Delta }^ n}$ and an equivalence $G: \operatorname{\mathcal{E}}\rightarrow \int _{\Delta ^ n} \mathscr {F}$ of cocartesian fibrations over $\Delta ^ n$ satisfying $G_0 = G|_{\operatorname{\mathcal{E}}'}$.
Proof of Lemma 11.9.7.7. Let $\operatorname{\mathcal{C}}$ denote the fiber $\{ 0\} \times _{\Delta ^ n} \operatorname{\mathcal{E}}$. By virtue of Corollary 11.9.6.7, there exists a categorical pushout diagram
where $H|_{ \{ 0\} \times \operatorname{\mathcal{C}}}$ is the identity functor from $\operatorname{\mathcal{C}}$ to itself and, for every object $C \in \operatorname{\mathcal{C}}$, the induced map $H|_{\Delta ^ n \times \{ C\} }: \Delta ^ n \rightarrow \operatorname{\mathcal{E}}$ carries each edge of $\Delta ^ n$ to a $U$-cocartesian morphism of $\operatorname{\mathcal{E}}$. Let $G'_{0}$ denote the composite map
Applying Lemma 11.9.7.6, we conclude that $\mathscr {F}_0$ and $G'_0$ admit extensions
having the property that, for every object $C \in \operatorname{\mathcal{C}}$, the restriction $G'|_{ \Delta ^ n \times \{ C\} }: \Delta ^ n \rightarrow \int _{\Delta ^ n} \mathscr {F}$ carries each edge of $\Delta ^ n$ to a $V$-cocartesian morphism of $\int _{\Delta ^ n} \mathscr {F}$, where $V: \int _{\Delta ^ n} \mathscr {F} \rightarrow \Delta ^ n$ is the projection map.
Since (11.18) is a categorical pushout square, the induced diagram
is a homotopy pullback diagram of Kan complexes, in which the horizontal maps are Kan fibrations (Corollary 4.4.5.4). Applying Example 3.4.1.4, we deduce that the map of fibers
is a homotopy equivalence of Kan complexes. We may therefore assume (after replacing $G'$ by an isomorphic functor if necessary) that $G'$ factors as a composition
where $G|_{\operatorname{\mathcal{E}}_0} = G_0$. We will complete the proof by showing that $G$ is an equivalence of cocartesian fibrations over $\Delta ^ n$. Note that, since $G_0$ is an equivalence of cocartesian fibrations over $\operatorname{\partial \Delta }^ n$, it follows that $G$ restricts to an equivalence of $\infty $-categories $\{ i\} \times _{\Delta ^ n} \operatorname{\mathcal{E}}\rightarrow \{ i\} \times _{\Delta ^ n} \int _{\Delta ^ n} \mathscr {F}$ for $0 \leq i \leq n$. By virtue of the criterion of Proposition 5.1.7.15, it will suffice to show that $G$ carries every $U$-cocartesian morphism of $\operatorname{\mathcal{E}}$ to a $V$-cocartesian morphism of $\int _{\Delta ^ n} \mathscr {F}$. If $n > 1$, this is automatic (since $\operatorname{\mathcal{E}}_0$ contains the $1$-skeleton of $\operatorname{\mathcal{E}}$). In the case $n=1$, it follows from Remark 5.1.6.8. $\square$