Example 6.1.0.3. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be functors between categories, and let $\{ \rho _{C,D} \} _{C \in \operatorname{\mathcal{C}}, D \in \operatorname{\mathcal{D}}}$ be a $\operatorname{Hom}$-adjunction between $F$ and $G$ (in the sense of Definition 6.1.0.1). Let $\eta : \operatorname{id}_{\operatorname{\mathcal{C}}} \rightarrow G \circ F$ and $\epsilon : F \circ G \rightarrow \operatorname{id}_{\operatorname{\mathcal{D}}}$ be the natural transformations given by the formulae
Then the pair $(\eta , \epsilon )$ is an adjunction between $F$ and $G$ (in the sense of Definition 6.1.0.2). Condition $(Z1)$ follows from the observation that for each object $C \in \operatorname{\mathcal{C}}$, we have
The verification of $(Z2)$ is similar.