# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Construction 6.1.2.1. Let $\operatorname{\mathcal{C}}$ be a $2$-category containing objects $T$, $C$, and $D$, together with $1$-morphisms $f: C \rightarrow D$, $g: D \rightarrow C$, $c: T \rightarrow C$, and $d: T \rightarrow D$.

• Let $\epsilon : f \circ g \Rightarrow \operatorname{id}_ D$ and $\beta : c \Rightarrow g \circ d$ be $2$-morphisms of $\operatorname{\mathcal{C}}$. We will refer to the composition

$f \circ c \xRightarrow {\operatorname{id}_ f \circ \beta } f \circ (g \circ d) \xRightarrow [\sim ]{\alpha _{f,g,d}} (f \circ g) \circ d \xRightarrow {\epsilon \circ \operatorname{id}_ d} \operatorname{id}_ D \circ d \xRightarrow [\sim ]{\lambda _ d} d$

as the left adjunct of $\beta$ with respect to $\epsilon$, or more simply as the left adjunct of $\beta$ if the $2$-morphism $\epsilon$ is clear from context. Here $\lambda _{d}$ and $\alpha _{f,g,d}$ are the left unit and associativity constraints for the $2$-category $\operatorname{\mathcal{C}}$.

• Let $\eta : \operatorname{id}_{C} \Rightarrow g \circ f$ and $\gamma : f \circ c \Rightarrow d$ be $2$-morphisms of $\operatorname{\mathcal{C}}$. We will refer to the composition

$c \xRightarrow [\sim ]{ \lambda _{c}^{-1} } \operatorname{id}_{C} \circ c \xRightarrow {\eta } (g \circ f) \circ c \xRightarrow [\sim ]{ \alpha _{g,f,c}^{-1} } g \circ (f \circ c) \xRightarrow {\operatorname{id}_ g \circ \gamma } g \circ d$

as the right adjunct of $\gamma$ with respect to $\eta$, or more simply as the right adjunct of $\gamma$ if the $2$-morphism $\eta$ is clear from context. Here again $\lambda _{c}$ and $\alpha _{g,f,c}$ are the left unit and associativity constraints for the $2$-category $\operatorname{\mathcal{C}}$.