Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 6.1.6.5. Let $\operatorname{\mathcal{C}}$ be a monoidal category and let $\operatorname{ev}: X \otimes Y \rightarrow {\bf 1}$ be a morphism of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

  • For every pair of objects $C,D \in \operatorname{\mathcal{C}}$, the composite map

    \begin{eqnarray*} \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, Y \otimes D) & \rightarrow & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X \otimes C, X \otimes (Y \otimes D) ) \\ & \simeq & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X \otimes C, (X \otimes Y) \otimes D) \\ & \xrightarrow {\operatorname{ev}} & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X \otimes C, {\bf 1} \otimes D) \\ & \simeq & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X \otimes C, D ) \end{eqnarray*}

    is a bijection.

  • For every pair of objects $C,D \in \operatorname{\mathcal{C}}$, the composite map

    \begin{eqnarray*} \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, D \otimes X) & \rightarrow & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \otimes Y, (D \otimes X) \otimes Y ) \\ & \simeq & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \otimes Y, D \otimes (X \otimes Y)) \\ & \xrightarrow {\operatorname{ev}} & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \otimes Y, D \otimes {\bf 1} ) \\ & \simeq & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C \otimes Y, D ) \end{eqnarray*}

    is a bijection.

  • There exists a morphism $\operatorname{coev}: {\bf 1} \rightarrow Y \otimes X$ for which the pair $(\operatorname{coev}, \operatorname{ev})$ is a duality datum, in the sense of Definition 6.1.6.1.

Moreover, if these conditions are satisfied, then the morphism $\operatorname{coev}: {\bf 1} \rightarrow Y \otimes X$ is unique.

Proof. Apply Proposition 6.1.2.13 to the $2$-category $B\operatorname{\mathcal{C}}$ of Example 2.2.2.5. $\square$