Proposition 6.2.1.14. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which admits a right adjoint. Let $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be another functor of $\infty $-categories and let $\eta : \operatorname{id}_{\operatorname{\mathcal{C}}} \rightarrow G \circ F$ be a natural transformation. The following conditions are equivalent:
- $(1)$
The natural transformation $\eta $ is the unit of an adjunction between the $\infty $-categories $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$.
- $(2)$
The induced map $\operatorname{id}_{ \mathrm{h} \mathit{\operatorname{\mathcal{C}}} } \rightarrow \mathrm{h} \mathit{G} \circ \mathrm{h} \mathit{F}$ is the unit of an adjunction between the homotopy categories $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ and $\mathrm{h} \mathit{\operatorname{\mathcal{D}}}$.