Corollary 6.2.2.22. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $L$ be a functor from $\operatorname{\mathcal{C}}$ to itself, and let $\eta : \operatorname{id}_{\operatorname{\mathcal{C}}} \rightarrow L$ be a natural transformation. The following conditions are equivalent:
- $(1)$
For every object $X \in \operatorname{\mathcal{C}}$, the morphisms $L(\eta _ X): L(X) \rightarrow L(L(X))$ and $\eta _{L(X)}: L(X) \rightarrow L(L(X))$ are isomorphisms.
- $(2)$
There exists a full subcategory $\operatorname{\mathcal{C}}' \subseteq \operatorname{\mathcal{C}}$ for which $\eta $ exhibits $L$ as a $\operatorname{\mathcal{C}}'$-reflection functor, in the sense of Definition 6.2.2.14.