Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 7.1.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. We will say that $\operatorname{\mathcal{C}}$ admits $K$-indexed limits if, for every diagram $u: K \rightarrow \operatorname{\mathcal{C}}$, there exists an object $Y \in \operatorname{\mathcal{C}}$ which is a limit of $u$. We will say that $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits if, for every diagram $u: K \rightarrow \operatorname{\mathcal{C}}$, there exists an object $X \in \operatorname{\mathcal{C}}$ which is a colimit of $u$.