Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 7.1.4.4. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories and let $K$ be a simplicial set. We will say that $F$ preserves $K$-indexed limits if, for every limit diagram $\overline{q}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$, the composite map $(F \circ \overline{q}): K^{\triangleleft } \rightarrow \operatorname{\mathcal{D}}$ is a limit diagram in $\operatorname{\mathcal{D}}$. We will say that $F$ preserves $K$-indexed colimits if, for every colimit diagram $\overline{q}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$, the composite map $(F \circ \overline{q}): K^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ is a colimit diagram in $\operatorname{\mathcal{D}}$.