Remark 7.1.6.2. Let $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories. Then a morphism $\overline{f}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ is a $U$-limit diagram if and only if the opposite map $\overline{f}^{\operatorname{op}}: (K^{\operatorname{op}})^{\triangleright } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is an $U^{\operatorname{op}}$-colimit diagram.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$