Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 6.3.7.6. Let $S$ be a simplicial set. We say that $S$ is nonsingular if, for every nondegenerate $n$-simplex $\sigma $ of $S$, the corresponding map $\sigma : \Delta ^ n \rightarrow S$ is a monomorphism of simplicial sets.