Corollary 6.3.7.13. Let $S$ be a nonsingular simplicial set. Then there exists a partially ordered set $A$ and a universally localizing morphism $\operatorname{N}_{\bullet }(A) \rightarrow S$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Corollary 6.3.7.13. Let $S$ be a nonsingular simplicial set. Then there exists a partially ordered set $A$ and a universally localizing morphism $\operatorname{N}_{\bullet }(A) \rightarrow S$.
Proof. Combine Proposition 6.3.7.2 with Remark 6.3.7.12. $\square$