Remark 7.1.6.7. Let $U_0: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, and let $U_1: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor which is isomorphic to $U_0$ (as an object of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$). Then a diagram $\overline{f}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ is a $U_0$-limit diagram if and only if it is a $U_1$-limit diagram (see Remark 7.1.5.8). This follows by applying Remark 7.1.6.6 to each square of the diagram
where $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{Isom}(\operatorname{\mathcal{D}})$ classifies an isomorphism between $U_0$ and $U_1$; note that $\operatorname{ev}_0$ and $\operatorname{ev}_1$ are trivial Kan fibrations by virtue of Corollary 4.4.5.10.