Remark 7.3.1.3. Stated more informally, a diagram
exhibits $F$ as a right Kan extension of $F_0$ along $\delta $ if, for every object $C \in \operatorname{\mathcal{C}}$, we can calculate the value $F(C) \in \operatorname{\mathcal{D}}$ as a limit of the diagram
Note that this requirement characterizes the object $F(C) \in \operatorname{\mathcal{D}}$ up to isomorphism (see Proposition 7.1.1.12). We will later prove a stronger assertion: if the diagrams $\delta : K \rightarrow \operatorname{\mathcal{C}}$ and $F_0: K \rightarrow \operatorname{\mathcal{D}}$ are fixed, then a right Kan extension of $F_0$ along $\delta $ is uniquely determined (up to isomorphism) as an object of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ (Remark 7.3.6.6).