Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 7.3.1.13. Suppose we are given a diagram

\[ \xymatrix@R =50pt@C=50pt{ & \operatorname{\mathcal{C}}\ar [dr]^{F} \ar@ {=>}[]+<0pt,-25pt>;+<0pt,-50pt>^-{\alpha } & \\ K \ar [ur]^{\delta } \ar [rr]_{F_0} & & \operatorname{\mathcal{D}}} \]

as in Definition 7.3.1.2. Let $\rho : F' \rightarrow F$ be a morphism in the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$. Then any two of the following conditions imply the third:

  • The natural transformation $\alpha $ exhibits $F$ as a right Kan extension of $F_0$ along $\delta $.

  • The composite natural transformation

    \[ \delta \circ F' \xrightarrow { \rho } \delta \circ F \xrightarrow { \alpha } F_0 \]

    exhibits $F'$ as a right Kan extension of $F_0$ along $\delta $ (note that this condition does not depend on the composition chosen, by virtue of Remark 7.3.1.10).

  • The morphism $\rho $ is an isomorphism in the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.

This follows by combining Remark 7.1.1.9 with Theorem 4.4.4.4.