Remark 7.3.2.2. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories and let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a full subcategory. Then $F$ is right Kan extended from $\operatorname{\mathcal{C}}^{0}$ if and only if the opposite functor $F^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$ is left Kan extended from $\operatorname{\mathcal{C}}^{0}$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$