Proposition 7.3.3.21 (Base Change). Suppose we are given a commutative diagram of $\infty $-categories
where each square is a pullback and the diagonal maps are inner fibrations. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}'$ be a functor of $\infty $-categories and $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a full subcategory. Then:
- $(1)$
If $G \circ F$ is $H$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$, then $F$ is $H'$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$.
- $(2)$
Assume that $U$ and $V$ are cartesian fibrations and that the functor $G$ carries $U$-cartesian morphisms of $\operatorname{\mathcal{D}}$ to $V$-cartesian morphisms of $\operatorname{\mathcal{E}}$. If $F$ is $H'$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$, then $G \circ F$ is an $H$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$.