Remark 7.3.6.8. In the situation of Proposition 7.3.6.7, the horizontal maps in the diagram (7.28) are Kan fibrations (Corollary 4.1.4.2 and Proposition 4.6.1.21). Consequently, the diagram (7.28) is a homotopy pullback square if and only if the induced map
is a homotopy equivalence (Example 3.4.1.3). Writing $\operatorname{\mathcal{M}}$ for the fiber product
and $V: \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{\mathcal{M}}$ for the functor given by $V(H) = ( H|_{\operatorname{\mathcal{C}}^{0}}, U \circ H)$, we can identify $\theta $ with the map $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})}( F, G) \rightarrow \operatorname{Hom}_{ \operatorname{\mathcal{M}}}( V(F), V(G) )$ determined by $V$. We can therefore restate Proposition 7.3.6.7 as follows:
If the functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$, then it is $V$-initial when viewed as an object of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.
If the functor $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is $U$-right Kan extended from $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$, then it is $V$-final when viewed as an object of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.