Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.3.8.2. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\overline{F}: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Suppose that $F = \overline{F}|_{\operatorname{\mathcal{C}}}$ is left Kan extended from a full subcategory $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$. Then $\overline{F}$ is a colimit diagram if and only if the composite map

\[ (\operatorname{\mathcal{C}}^{0})^{\triangleright } \hookrightarrow \operatorname{\mathcal{C}}^{\triangleright } \xrightarrow { \overline{F} } \operatorname{\mathcal{D}} \]

is a colimit diagram.

Proof. Apply Proposition 7.3.8.1 in the special case $\operatorname{\mathcal{E}}= \Delta ^0$. $\square$