Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.5.6.15. Let $\operatorname{\mathcal{C}}$ be a small category and let $\alpha : \mathscr {E} \rightarrow \mathscr {F}$ be a levelwise categorical equivalence of isofibrant diagrams $\mathscr {E}, \mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. Then $\alpha $ admits a homotopy inverse: that is, there is a natural transformation $\beta : \mathscr {F} \rightarrow \mathscr {E}$ such that $\alpha \circ \beta $ and $\beta \circ \alpha $ are isomorphic to $\operatorname{id}_{ \mathscr {F} }$ and $\operatorname{id}_{ \mathscr {E} }$ as objects of the $\infty $-categories $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {F}, \mathscr {F} )_{\bullet }$ and $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {E} )_{\bullet }$, respectively.

Proof. Since $\mathscr {E}$ is isofibrant, Proposition 4.5.6.14 guarantees that the functor

\[ \operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {F}, \mathscr {E} )_{\bullet } \xrightarrow { \circ \alpha } \operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {E} )_{\bullet } \]

is an equivalence of $\infty $-categories. In particular, there exists a natural transformation $\beta : \mathscr {F} \rightarrow \mathscr {E}$ such that $\beta \circ \alpha $ is isomorphic to $\operatorname{id}_{ \mathscr {E} }$ (when viewed as an object of the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {E} )_{\bullet }$). To complete the proof, it will suffice to show that $\beta $ is also a right homotopy inverse to $\alpha $: that is, the composition $\alpha \circ \beta $ is isomorphic to $\operatorname{id}_{ \mathscr {F}}$ (when viewed as an object of the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {F}, \mathscr {F} )_{\bullet }$).

For each object $C \in \operatorname{\mathcal{C}}$, the functor $\beta _{C}: \mathscr {F}(C) \rightarrow \mathscr {E}(C)$ is a left homotopy inverse of the functor $\alpha _{C}: \mathscr {E}(C) \rightarrow \mathscr {F}(C)$. Since $\alpha _ C$ is an equivalence of $\infty $-categories, it follows that $\beta _{C}$ is also an equivalence of $\infty $-categories. Allowing $C$ to vary, we conclude that $\beta $ is a levelwise categorical equivalence. We can therefore repeat the preceding argument to obtain a natural transformation $\gamma : \mathscr {E} \rightarrow \mathscr {F}$ such that $\gamma \circ \beta $ is isomorphic to $\operatorname{id}_{ \mathscr {F} }$. We then have isomorphisms

\[ \alpha \simeq (\gamma \circ \beta ) \circ \alpha = \gamma \circ (\beta \circ \alpha ) \simeq \gamma \]

in the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {F} )_{\bullet }$, so that $\alpha \circ \beta $ is also isomorphic to $\operatorname{id}_{ \mathscr {F}}$. $\square$