Definition 4.5.6.1. Let $\operatorname{\mathcal{C}}$ be a category and let $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ be a natural transformation between diagrams $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. We say that $\alpha $ is a levelwise categorical equivalence if, for every object $C \in \operatorname{\mathcal{C}}$, the induced map $\alpha _{C}: \mathscr {F}(C) \rightarrow \mathscr {G}(C)$ is a categorical equivalence of simplicial sets.
4.5.6 Isofibrant Diagrams
Let $\operatorname{\mathcal{C}}$ be a small category. Every diagram of simplicial sets $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ has a limit in the category $\operatorname{Set_{\Delta }}$, given concretely by the formula
see Remark 1.1.0.8. Beware that, when using simplicial sets as a framework for higher category theory, this operation is badly behaved in general:
If each of the simplicial sets $\mathscr {F}(C)$ is an $\infty $-category, then the limit $\varprojlim (\mathscr {F})$ need not be an $\infty $-category.
If $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ be a natural transformation between functors $\mathscr {F},\mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ which is a levelwise categorical equivalence (Definition 4.5.6.1), then the induced map $\varprojlim (\alpha ): \varprojlim (\mathscr {F} ) \rightarrow \varprojlim ( \mathscr {G} )$ need not be a categorical equivalence.
In this section, we will introduce the class of isofibrant diagrams $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ (Definition 4.5.6.3), and show that it does not suffer from these defects:
If $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ is an isofibrant diagram of simplicial sets, then the limit $\varprojlim (\mathscr {F})$ is an $\infty $-category (Corollary 4.5.6.13).
If $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ is a levelwise categorical equivalence between isofibrant diagrams $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$, then the induced map $\varprojlim (\alpha ): \varprojlim (\mathscr {F} ) \rightarrow \varprojlim ( \mathscr {G} )$ is an equivalence of $\infty $-categories (Corollary 4.5.6.17).
We begin by introducing some terminology.
Remark 4.5.6.2. Definition 4.5.6.1 is a special case of a general convention. If $P$ is a property of morphisms of simplicial sets and $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ is a natural transformation between diagrams $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$, then we say that $\alpha $ has the property $P$ levelwise if, for every object $C \in \operatorname{\mathcal{C}}$, the morphism of simplicial sets $\alpha _{C}: \mathscr {F}(C) \rightarrow \mathscr {G}(C)$ has the property $P$. For example, we say that $\alpha $ is a levelwise weak homotopy equivalence if, for every object $C \in \operatorname{\mathcal{C}}$, the morphism $\alpha _{C}: \mathscr {F}(C) \rightarrow \mathscr {G}(C)$ is a weak homotopy equivalence of simplicial sets.
Definition 4.5.6.3. Let $\operatorname{\mathcal{C}}$ be a small category. We say that a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ is isofibrant if it satisfies the following condition:
Let $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a functor and let $\mathscr {E}_0 \subseteq \mathscr {E}$ be a subfunctor for which the inclusion $\mathscr {E}_0 \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence. Then every natural transformation $\alpha _0: \mathscr {E}_0 \rightarrow \mathscr {F}$ admits an extension $\alpha : \mathscr {E} \rightarrow \mathscr {F}$.
Example 4.5.6.4. Let $\operatorname{\mathcal{C}}= \{ X\} $ be a category having a single object and a single morphism. Then a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ is determined by the simplicial set $\mathscr {F}(X)$. The diagram $\mathscr {F}$ is isofibrant (in the sense of Definition 4.5.6.3) if and only if the simplicial set $\mathscr {F}(X)$ is an $\infty $-category.
Remark 4.5.6.5. Let $\operatorname{\mathcal{C}}$ be a small category and $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram. Then, for each object $C \in \operatorname{\mathcal{C}}$, the simplicial set $\mathscr {F}(C)$ is an $\infty $-category. That is, for $0 < i < n$, every morphism of simplicial sets $\sigma _0: \Lambda ^{n}_{i} \rightarrow \mathscr {F}(C)$ can be extended to an $n$-simplex of $\mathscr {F}(C)$. This follows by applying condition $(\ast )$ of Definition 4.5.6.3 to the functor together with the subfunctor $\mathscr {E}_0 \subseteq \mathscr {E}$ given by $\mathscr {E}_0(D) = \Lambda ^{n}_{i} \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C,D)$.
In some cases, Definition 4.5.6.3 can be formulated more concretely.
Proposition 4.5.6.6. Let $(Q, \leq )$ be a well-founded partially ordered set (see Definition 4.7.1.1). Then a diagram of simplicial sets $\mathscr {F}: Q^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ is isofibrant if and only if, for each element $q \in Q$, the map is an isofibration of simplicial sets.
Example 4.5.6.7 (Isofibrant Squares). A square diagram of $\infty $-categories is isofibrant (when regarded as a functor $[1] \times [1] \rightarrow \operatorname{Set_{\Delta }}$) if and only if it satisfies the following conditions:
The functors $F_0: \operatorname{\mathcal{E}}_0 \rightarrow \operatorname{\mathcal{E}}$ and $F_1: \operatorname{\mathcal{E}}_1 \rightarrow \operatorname{\mathcal{E}}$ are isofibrations of $\infty $-categories.
The functor $(F'_1, F'_0): \operatorname{\mathcal{E}}_{01} \rightarrow \operatorname{\mathcal{E}}_0 \times _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{E}}_1$ is an isofibration of $\infty $-categories.
Example 4.5.6.8 (Isofibrant Towers). Let $\mathscr {F}: \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram, which we identify with a tower of simplicial sets Then $\mathscr {F}$ is isofibrant (in the sense of Definition 4.5.6.3) if and only if each of the simplicial sets $\mathscr {F}(n)$ is an $\infty $-category and each of the transition functors $\mathscr {F}(n+1) \rightarrow \mathscr {F}(n)$ is an isofibration of $\infty $-categories.
Example 4.5.6.9 (The Postnikov Tower). Let $X$ be a Kan complex. Then the tower of fundamental $n$-groupoids is an isofibrant diagram of Kan complexes (Corollary 3.5.8.9).
Variant 4.5.6.10. If $X$ is a Kan complex, then the weakly coskeletal tower of Example 3.5.8.5 is an isofibrant diagram (Variant 3.5.8.10). Beware that the coskeletal tower is generally not isofibrant (Warning 3.5.8.11).
Proof of Proposition 4.5.6.6. Suppose first that $\mathscr {F}: Q^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ is an isofibrant diagram. We will show that, for each element $q \in Q$, the induced map $\theta _{q}: \mathscr {F}(q) \rightarrow \varprojlim _{p < q} \mathscr {F}(p)$ is an isofibration of simplicial sets (for this step, we do not need to assume that $Q$ is well-founded). Fix a simplicial set $B$ and a simplicial subset $A \subseteq B$ for which the inclusion map $A \hookrightarrow B$ is a categorical equivalence; we wish to show that every lifting problem
admits a solution. Define $\mathscr {B}: Q^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ by the formula $\mathscr {B}(p) = \left\{ \begin{array}{rl} B & \textnormal{ if } p \leq q \\ \emptyset & \textnormal{ otherwise, } \end{array}\right.$ and let $\mathscr {B}_0 \subseteq \mathscr {B}$ be the subfunctor given by the formula
The lifting problem (4.41) can be identified with a natural transformation of functors $\alpha _0: \mathscr {B}_0 \rightarrow \mathscr {F}$. Since the inclusion $\mathscr {B}_0 \hookrightarrow \mathscr {B}$ is a levelwise categorical equivalence and $\mathscr {F}$ is isofibrant, we can extend $\alpha _0$ to a natural transformation $\alpha : \mathscr {B} \rightarrow \mathscr {F}$, which determines a solution to the lifting problem (4.41).
Now suppose that the partially ordered set $(Q, \leq )$ is well-founded and that for each $q \in Q$, the morphism $\theta _{q}$ is an isofibration of simplicial sets. We wish to show that the diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ is isofibrant. Let $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a functor, let $\mathscr {E}_0 \subseteq \mathscr {E}$ be a subfunctor for which the inclusion $\mathscr {E}_0 \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence, and let $\alpha _0: \mathscr {E}_0 \rightarrow \mathscr {F}$ be a natural transformation; we wish to show that $\alpha _0$ can be extended to a natural transformation $\alpha : \mathscr {E} \rightarrow \mathscr {F}$.
For every downward-closed subset $P \subseteq Q$, let $\mathscr {E}^{P} \subseteq \mathscr {E}$ denote the subfunctor given by $\mathscr {E}^{P}(q) = \left\{ \begin{array}{rl} \mathscr {E}(q) & \textnormal{ if }q \in P \\ \emptyset & \textnormal{otherwise,} \end{array}\right.$, and set $\mathscr {E}^{P}_{0} = \mathscr {E}^{P} \cap \mathscr {E}_0$. Let $S$ denote the collection of pairs $(P, \alpha ^{P})$, where $P \subseteq Q$ is a downward-closed subset and $\alpha ^{P}: \mathscr {E}^{P} \rightarrow \mathscr {F}$ is a natural transformation satisfying $\alpha ^{P}|_{ \mathscr {E}^{P}_{0} } = \alpha _0|_{ \mathscr {E}^{P}_{0} }$. We regard $S$ as a partially ordered set, where $(P, \alpha ^{P}) \leq (P', \alpha ^{P'} )$ if $P$ is contained in $P'$ and $\alpha ^{P}$ is equal to the restriction $\alpha ^{P'}|_{ \mathscr {E}^{P}}$. The partially ordered set $S$ satisfies the hypotheses of Zorn's lemma, and therefore contains a maximal element $(P, \alpha ^{P})$. To complete the proof, it will suffice to show that $P = Q$, so that $\alpha ^{P}: \mathscr {E} \rightarrow \mathscr {F}$ is an extension of $\alpha _0$. Assume otherwise. Since $Q$ is well-founded, the complement $Q \setminus P$ contains a minimal element $q$. Set $P' = P \cup \{ q\} $. Since $\theta _{q}$ is an isofibration of simplicial sets, the lifting problem
admits a solution in the category of simplicial sets. This solution determines a natural transformation $\alpha ^{P'}: \mathscr {E}^{P'} \rightarrow \mathscr {F}$ satisfying $\alpha ^{P'}|_{ \mathscr {E}^{P} } = \alpha ^{P}$ and $\alpha ^{P'}|_{ \mathscr {E}^{P'}_{0} } = \alpha _{0} |_{ \mathscr {E}^{P'}_{0} }$, contradicting the maximality of the pair $(P, \alpha ^{P})$. $\square$
We now record some useful properties of isofibrant diagrams of simplicial sets. Fix a small category $\operatorname{\mathcal{C}}$, and let us regard $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})$ as equipped with the simplicial enrichment described in Example 2.4.2.2. For every simplicial set $K$, we let $\underline{K}$ denote the constant functor $\operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ taking the value $K$.
Proposition 4.5.6.11. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram of simplicial sets. For every functor $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ and every subfunctor $\mathscr {E}_0 \subseteq \mathscr {E}$, the restriction map is an isofibration of simplicial sets. If the inclusion $\mathscr {E}_0 \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence, then $\theta $ is a trival Kan fibration.
Proof. Let $B$ be a simplicial set and let $A \subseteq B$ be a simplicial subset. We wish to show that every lifting problem
admits a solution, provided that either the inclusion map $A \hookrightarrow B$ is a categorical equivalence or the inclusion $\mathscr {E}_0 \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence. Unwinding the definitions, we see that the diagram (4.42) determines a natural transformation
and that solutions to (4.42) can be identified with extensions of $\alpha _0$ to a natural transformation $\alpha : \underline{B} \times \mathscr {E} \rightarrow \mathscr {F}$. By virtue of our assumption that $\mathscr {F}$ is isofibrant, we are reduced to proving that the inclusion map
is a levelwise categorical equivalence, which follows from Corollary 4.5.4.15. $\square$
Corollary 4.5.6.12. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {E}, \mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be diagrams of simplicial sets. If $\mathscr {F}$ is isofibrant, then the simplicial set $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \mathscr {E}, \mathscr {F} )_{\bullet }$ is an $\infty $-category.
Proof. Apply Proposition 4.5.6.11 in the special case $\mathscr {E}_0 = \emptyset $. $\square$
Corollary 4.5.6.13. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram of simplicial sets. Then the limit $\varprojlim ( \mathscr {F} )$ is an $\infty $-category.
Proof. Apply Corollary 4.5.6.12 in the special case $\mathscr {E} = \underline{ \Delta ^{0} }$. $\square$
Proposition 4.5.6.14. Let $\operatorname{\mathcal{C}}$ be a small category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram, and let $\alpha : \mathscr {E} \rightarrow \mathscr {E}'$ be a natural transformation between diagrams $\mathscr {E}, \mathscr {E}': \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. If $\alpha $ is a levelwise categorical equivalence, then precomposition with $\alpha $ induces an equivalence of $\infty $-categories
Proof. Using Exercise 3.1.7.11, we can choose a contractible Kan complex $X$ containing a pair of vertices $x,y \in X$ with $x \neq y$. Evaluation at the vertices $x$ and $y$ determine trivial Kan fibrations of $\infty $-categories
Form a pullback diagram
so that $U$ is also a trivial Kan fibration and therefore an equivalence of $\infty $-categories. It will therefore suffice to show that $\operatorname{ev}_{x} \circ T$ is an equivalence of $\infty $-categories. Since the functors $\operatorname{ev}_{x}$ and $\operatorname{ev}_{y}$ are isomorphic, this is equivalent to the requirement that $\operatorname{ev}_{y} \circ T$ is an equivalence of $\infty $-categories. In fact, the functor $\operatorname{ev}_{y} \circ T$ is a trivial Kan fibration: this follows by applying Proposition 4.5.6.11 to the levelwise categorical equivalence
Corollary 4.5.6.15. Let $\operatorname{\mathcal{C}}$ be a small category and let $\alpha : \mathscr {E} \rightarrow \mathscr {F}$ be a levelwise categorical equivalence of isofibrant diagrams $\mathscr {E}, \mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. Then $\alpha $ admits a homotopy inverse: that is, there is a natural transformation $\beta : \mathscr {F} \rightarrow \mathscr {E}$ such that $\alpha \circ \beta $ and $\beta \circ \alpha $ are isomorphic to $\operatorname{id}_{ \mathscr {F} }$ and $\operatorname{id}_{ \mathscr {E} }$ as objects of the $\infty $-categories $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {F}, \mathscr {F} )_{\bullet }$ and $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {E} )_{\bullet }$, respectively.
Proof. Since $\mathscr {E}$ is isofibrant, Proposition 4.5.6.14 guarantees that the functor
is an equivalence of $\infty $-categories. In particular, there exists a natural transformation $\beta : \mathscr {F} \rightarrow \mathscr {E}$ such that $\beta \circ \alpha $ is isomorphic to $\operatorname{id}_{ \mathscr {E} }$ (when viewed as an object of the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {E} )_{\bullet }$). To complete the proof, it will suffice to show that $\beta $ is also a right homotopy inverse to $\alpha $: that is, the composition $\alpha \circ \beta $ is isomorphic to $\operatorname{id}_{ \mathscr {F}}$ (when viewed as an object of the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {F}, \mathscr {F} )_{\bullet }$).
For each object $C \in \operatorname{\mathcal{C}}$, the functor $\beta _{C}: \mathscr {F}(C) \rightarrow \mathscr {E}(C)$ is a left homotopy inverse of the functor $\alpha _{C}: \mathscr {E}(C) \rightarrow \mathscr {F}(C)$. Since $\alpha _ C$ is an equivalence of $\infty $-categories, it follows that $\beta _{C}$ is also an equivalence of $\infty $-categories. Allowing $C$ to vary, we conclude that $\beta $ is a levelwise categorical equivalence. We can therefore repeat the preceding argument to obtain a natural transformation $\gamma : \mathscr {E} \rightarrow \mathscr {F}$ such that $\gamma \circ \beta $ is isomorphic to $\operatorname{id}_{ \mathscr {F} }$. We then have isomorphisms
in the $\infty $-category $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})} ( \mathscr {E}, \mathscr {F} )_{\bullet }$, so that $\alpha \circ \beta $ is also isomorphic to $\operatorname{id}_{ \mathscr {F}}$. $\square$
Corollary 4.5.6.16. Let $\operatorname{\mathcal{C}}$ be a small category, let $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets, and let $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ be a levelwise categorical equivalence between diagrams $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. If $\mathscr {F}$ and $\mathscr {G}$ are isofibrant, then composition with $\alpha $ induces an equivalence of $\infty $-categories
Corollary 4.5.6.17. Let $\operatorname{\mathcal{C}}$ be a small category, and let $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ be a levelwise categorical equivalence between isofibrant diagrams $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. Then the induced map $\varprojlim (\alpha ): \varprojlim ( \mathscr {F} ) \rightarrow \varprojlim ( \mathscr {G} )$ is an equivalence of $\infty $-categories.
Proof. Apply Corollary 4.5.6.16 in the special case $\mathscr {E} = \underline{ \Delta ^{0} }$. $\square$
Example 4.5.6.18. Suppose we are given a commutative diagram of $\infty $-categories where the horizontal maps are isofibrations and the vertical maps are equivalences of $\infty $-categories. Then the induced map $\varprojlim \operatorname{\mathcal{C}}(n) \rightarrow \varprojlim \operatorname{\mathcal{D}}(n)$ is an equivalence of $\infty $-categories. This follows by combining Example 4.5.6.8, Corollary 4.5.6.13, and Corollary 4.5.6.17.
Proposition 4.5.6.19. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the simplicial set $\mathscr {F}(C)$ is a Kan complex. Then, for every diagram $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$, the simplicial set $X = \operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \mathscr {E}, \mathscr {F} )_{\bullet }$ is a Kan complex.
Proof. By virtue of Corollary 4.5.6.12, the simplicial set $X$ is an $\infty $-category. Define $\mathscr {F}^{\Delta ^{1}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ by the formula $\mathscr {F}^{ \Delta ^{1} }(C) = \operatorname{Fun}( \Delta ^1, \mathscr {F}(C) )$. Then $\mathscr {F}^{ \Delta ^1 }$ is also an isofibrant diagram. Moreover, our assumption that each $\mathscr {F}(C)$ is a Kan complex guarantees that the diagonal embedding $\mathscr {F} \hookrightarrow \mathscr {F}^{\Delta ^1}$ is a levelwise categorical equivalence. Applying Corollary 4.5.6.16, we deduce that the diagonal map $X \hookrightarrow \operatorname{Fun}( \Delta ^1, X)$ is an equivalence of $\infty $-categories. In particular, every morphism of $X$ is isomorphic (as an object of the $\infty $-category $\operatorname{Fun}( \Delta ^1, X)$ ) to an identity morphism, and is therefore an isomorphism (Example 4.4.1.14). Applying Proposition 4.4.2.1, we deduce that $X$ is a Kan complex. $\square$
Corollary 4.5.6.20. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the simplicial set $\mathscr {F}(C)$ is a Kan complex. Then the simplicial set $\varprojlim ( \mathscr {F} )$ is a Kan complex.
Proof. Apply Proposition 4.5.6.19 in the special case $\mathscr {E} = \underline{ \Delta ^{0} }$. $\square$
Corollary 4.5.6.21. Let $\operatorname{\mathcal{C}}$ be a small category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be an isofibrant diagram, and define $\mathscr {F}^{\simeq }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ by the formula $\mathscr {F}^{\simeq }(C) = \mathscr {F}(C)^{\simeq }$. Then $\mathscr {F}^{\simeq }$ is also an isofibrant diagram. Moreover, the inclusion map $\varprojlim ( \mathscr {F}^{\simeq } ) \hookrightarrow \varprojlim ( \mathscr {F} )$ restricts to an isomorphism of $\varprojlim ( \mathscr {F}^{\simeq } )$ with the core of the $\infty $-category $\varprojlim ( \mathscr {F} )$.
Proof. We first show that the diagram $\mathscr {F}^{\simeq }$ is isofibrant. Let $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a functor and let $\mathscr {E}_0 \subseteq \mathscr {E}$ be a subfunctor for which the inclusion $\mathscr {E}_0 \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence. Suppose we are given a natural transformation $\alpha _0: \mathscr {E}_0 \rightarrow \mathscr {F}^{\simeq }$. Our assumption that $\mathscr {F}$ is isofibrant guarantees that $\alpha _0$ can be extended to a natural transformation $\alpha : \mathscr {E} \rightarrow \mathscr {F}$. We claim that $\alpha $ automatically factors through the functor $\mathscr {F}^{\simeq }$: that is, for every object $C \in \operatorname{\mathcal{C}}$, the map $\alpha _{C}: \mathscr {E}(C) \rightarrow \mathscr {F}(C)$ factors through the core of $\mathscr {F}(C)$. This follows from the observation that the lifting problem
has a (unique) solution, since the inclusion $\mathscr {F}(C)^{\simeq } \hookrightarrow \mathscr {F}(C)$ is an isofibration (Proposition 4.4.3.6).
We now prove the second assertion. Let $X$ denote the core of the $\infty $-category $\varprojlim ( \mathscr {F} )$. For every object $C \in \operatorname{\mathcal{C}}$, the projection map $\varprojlim ( \mathscr {F} ) \rightarrow \mathscr {F}(C)$ carries $X$ into the core of $\mathscr {F}(C)$. It follows that $X$ is contained in the inverse limit $\varprojlim ( \mathscr {F}^{\simeq } )$. The reverse inclusion follows from Corollary 4.4.3.18, since the simplicial set $\varprojlim ( \mathscr {F}^{\simeq } )$ is a Kan complex (Corollary 4.5.6.20). $\square$
Corollary 4.5.6.22. Suppose we are given an inverse system of $\infty $-categories where each of the transition functors $\operatorname{\mathcal{C}}(n) \rightarrow \operatorname{\mathcal{C}}(n-1)$ is an isofibration. Then the limit $\operatorname{\mathcal{C}}= \varprojlim _{n} \operatorname{\mathcal{C}}(n)$ is an $\infty $-category, whose core $\operatorname{\mathcal{C}}^{\simeq }$ is the inverse limit $\varprojlim _{n} \operatorname{\mathcal{C}}(n)^{\simeq }$. In other words, a morphism of $\operatorname{\mathcal{C}}$ is an isomorphism if and only if its image in each $\operatorname{\mathcal{C}}(n)$ is an isomorphism.
Proof. Combine Example 4.5.6.8, Corollary 4.5.6.13, and Corollary 4.5.6.21. $\square$
We close this section by establishing a variant of Proposition 4.5.6.6 for simplicial objects of the category $\operatorname{Set_{\Delta }}$.
Proposition 4.5.6.23. Let $\operatorname{{\bf \Delta }}$ be the simplex category (Definition 1.1.0.2) and let $\mathscr {F}: \operatorname{{\bf \Delta }}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets. Then $\mathscr {F}$ is isofibrant if and only if it satisfies the following condition for each $n \geq 0$:
The comparison map
is an isofibration of simplicial sets. Here the limit is indexed by the (partially ordered) collection of strictly increasing functions $[m] \hookrightarrow [n]$ which are not bijective.
Remark 4.5.6.24. For small values of $n$, condition $(\ast _ n)$ of Proposition 4.5.6.23 can be stated more concretely:
For $n = 0$, it asserts that the simplicial set $\mathscr {F}( [0] )$ is an $\infty $-category.
For $n = 1$, it asserts that the face operators of $\mathscr {F}$ determine an isofibration of simplicial sets
If both of these conditions are satisfied, then the face operators $d^{1}_{0}, d^{1}_{1}: \mathscr {F}([1] ) \rightarrow \mathscr {F}( [0] )$ are isofibrations of $\infty $-categories.
Remark 4.5.6.25. For every simplicial set $S$, let $\underline{S}: \operatorname{{\bf \Delta }}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ denote the functor which carries each object $[m] \in \operatorname{{\bf \Delta }}^{\operatorname{op}}$ to the set $\operatorname{Hom}_{\operatorname{Set_{\Delta }}}( \Delta ^ m, S)$, regarded as a constant simplicial set. Unwinding the definitions, we see that the morphism $\theta _ n$ appearing in Proposition 4.5.6.23 can be identified with the restriction map Consequently, if $\mathscr {F}$ is isofibrant, then $\theta _ n$ is an isofibration of $\infty $-categories (Proposition 4.5.6.11 and Corollary 4.5.6.12). If $\mathscr {F}$ is an isofibrant diagram of Kan complexes, then $\theta _ n$ is a Kan fibration between Kan complexes (Corollary 4.5.6.20).
Proof of Proposition 4.5.6.23. Let $\mathscr {F}: \operatorname{{\bf \Delta }}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram which satisfies condition $(\ast _ n)$ of Proposition 4.5.6.23 for every integer $n \geq 0$; we wish to show that $\mathscr {F}$ is isofibrant (the converse follows from Remark 4.5.6.25). Let $\mathscr {E}: \operatorname{{\bf \Delta }}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets and let $\mathscr {E}_0 \subseteq \mathscr {E}$ be a subfunctor having the property that, for every integer $n \geq 0$, the inclusion map $\mathscr {E}_0( [n] ) \hookrightarrow \mathscr {E}( [n] )$ is a categorical equivalence. We wish to show that every natural transformation $\alpha _0: \mathscr {E}_0 \rightarrow \mathscr {F}$ can be extended to a map $\alpha : \mathscr {E} \rightarrow \mathscr {F}$.
For each integer $n \geq 0$, let $\mathscr {E}_{n} \subseteq \mathscr {E}$ denote the smallest subfunctor which contains $\mathscr {E}_{0}$ and satisfies $\mathscr {E}_{n}( [m] ) = \mathscr {E}( [m] )$ for $m < n$. Then $\mathscr {E}$ can be written as the union of an increasing sequence of subfunctors
To complete the proof, it will suffice to show that every natural transformation $\alpha _{n}: \mathscr {E}_{n} \rightarrow \mathscr {F}$ admits an extension $\alpha _{n+1}: \mathscr {E}_{n+1} \rightarrow \mathscr {F}$. Using Proposition 1.1.4.12, we see that the inclusion $\mathscr {E}_{n} \hookrightarrow \mathscr {E}_{n+1}$ is a pushout of the inclusion map
Consequently, to prove the existence of $\alpha _{n+1}$, we are reduced to solving a lifting problem
By virtue of assumption $(\ast _ n)$, it will suffice to show that the inclusion map $\mathscr {E}_{n}([n] ) \hookrightarrow \mathscr {E}( [n] )$ is a categorical equivalence of simplicial sets.
In fact, we will prove a stronger assertion: the inclusion map $\rho _{n}: \mathscr {E}_{n} \hookrightarrow \mathscr {E}$ is a levelwise categorical equivalence for every integer $n \geq 0$. Our proof proceeds by induction on $n$, the case $n = 0$ being trivial. To carry out the inductive step, let us assume that $\rho _{n}$ is a levelwise categorical equivalence for some $n \geq 0$; in particular, the inclusion map $\mathscr {E}_{n}( [n] ) \hookrightarrow \mathscr {E}( [n] )$ is a categorical equivalence. Since the collection of categorical equivalences is closed under the formation of coproducts (Corollary 4.5.3.10), it follows that the natural transformation $\iota _{n}$ is a levelwise categorical equivalence. The inclusion map $\mathscr {E}_{n} \hookrightarrow \mathscr {E}_{n+1}$ is a pushout of $\iota _ n$, and is therefore also a levelwise categorical equivalence (Remark 4.5.4.13). Since the collection of (levelwise) categorical equivalences satisfies the two-out-of-three property (Remark 4.5.3.5), it follows that $\rho _{n+1}$ is also a categorical equivalence. $\square$