Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.8.9. Let $X$ be a Kan complex. Then the transition maps in the canonical Postnikov tower

\[ \cdots \rightarrow \pi _{\leq 3}(X) \rightarrow \pi _{\leq 2}(X) \rightarrow \pi _{\leq 1}(X) \rightarrow \pi _{\leq 0}(X) \]

are Kan fibrations. Moreover, for every vertex $x \in X$ and every integer $n > 0$, there is a canonical homotopy equivalence

\[ \mathrm{K}(G,n) \rightarrow \{ x\} \times _{ \pi _{\leq n-1}(X) } \pi _{\leq n}(X), \]

for $G = \pi _{n}(X,x)$.

Proof. For $n > 0$, the transition map $\pi _{\leq n}(X) \rightarrow \pi _{\leq n-1}(X)$ factors as a composition

\[ \pi _{\leq n}(X) \xrightarrow {f_ n} \operatorname{cosk}_{n-1}^{\circ }(X) \xrightarrow {g} \pi _{\leq n-1}(X), \]

where $f_{n}$ is the Kan fibration of Proposition 3.5.8.7 and $g$ is the trivial Kan fibration of Corollary 3.5.6.14. We therefore obtain a pullback diagram of Kan complexes

\[ \xymatrix@R =50pt@C=50pt{ \mathrm{K}(G,n) \ar [r] \ar [d] & \{ x\} \times _{ \pi _{\leq n-1}(X) } \pi _{\leq n}(X) \ar [d] \\ \{ x\} \ar [r] & \{ x\} \times _{ \pi _{\leq n-1}(X) } \operatorname{cosk}_{n-1}^{\circ }(X) } \]

where the vertical maps are Kan fibrations and the lower right corner is contractible. In particular, the lower horizontal map is a homotopy equivalence. Applying Corollary 3.4.1.5, we deduce that the upper horizontal map is also a homotopy equivalence. $\square$