Remark 6.3.1.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets which exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to a collection of edges $W$, and let $U: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty $-categories. Then, for every diagram $\operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$, precomposition with $F$ induces a fully faithful functor
whose essential image is spanned by those functors $G: \operatorname{\mathcal{C}}\rightarrow \overline{\operatorname{\mathcal{E}}}$ which carry each edge of $W$ to an isomorphism in the $\infty $-category $\overline{\operatorname{\mathcal{E}}}$. This follows by applying Corollary 4.5.2.32 to the diagram