Corollary 7.5.3.5 (Existence of Isofibrant Replacements). Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets. Then there exists a monomorphism of diagrams $\alpha : \mathscr {F} \hookrightarrow \mathscr {G}$, where $\alpha $ is a levelwise categorical equivalence and $\mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ is an isofibrant diagram of $\infty $-categories.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$