Proposition 7.5.4.4 (Homotopy Invariance). Let $\operatorname{\mathcal{C}}$ be a category and let $\alpha : \overline{\mathscr {F}} \rightarrow \overline{\mathscr {G}}$ be a natural transformation between diagrams $\overline{\mathscr {F}}, \overline{\mathscr {G}}: \operatorname{\mathcal{C}}^{\triangleleft } \rightarrow \operatorname{Kan}$. Assume that, for every object $C \in \operatorname{\mathcal{C}}$, the induced map $\alpha _{C}: \overline{\mathscr {F}}(C) \rightarrow \overline{\mathscr {G}}(C)$ is a homotopy equivalence of Kan complexes. Then any two of the following conditions imply the third:
- $(1)$
The functor $\overline{\mathscr {F}}$ is a homotopy limit diagram.
- $(2)$
The functor $\overline{\mathscr {G}}$ is a homotopy limit diagram.
- $(3)$
The natural transformation $\alpha $ induces a homotopy equivalence $\overline{\mathscr {F}}( {\bf 0} ) \rightarrow \overline{\mathscr {G}}( {\bf 0} )$, where ${\bf 0}$ denotes the cone point of $\operatorname{\mathcal{C}}^{\triangleleft }$.