Construction 7.5.6.8 (Explicit Cofibrant Replacement). Let $\operatorname{\mathcal{C}}$ be a small category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets, and let $ \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} )$ denote the homotopy colimit of $\mathscr {F}$ (Construction 5.3.2.1). For each object $C \in \operatorname{\mathcal{C}}$, we let $\mathscr {F}_{+}(C)$ denote the simplicial set given by the fiber product
The construction $C \mapsto \mathscr {F}_{+}(C)$ determines a diagram of simplicial sets $\mathscr {F}_{+}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. This diagram is equipped with a natural transformation $\alpha : \mathscr {F}_{+} \twoheadrightarrow \mathscr {F}$, which carries each object $C \in \operatorname{\mathcal{C}}$ to the comparison map
of Remark 5.3.2.9.