Remark 7.6.1.4. Let $\{ f_ i: Y \rightarrow Y_ i \} _{i \in I}$ be a collection of morphisms in an $\infty $-category $\operatorname{\mathcal{C}}$. Then the collection $\{ q_ i \} _{i \in I}$ exhibits $Y$ as a product of the collection $\{ Y_ i \} _{i \in I}$ in the category $\operatorname{\mathcal{C}}$ if and only if it exhibits $Y$ as a coproduct of the collection $\{ Y_ i \} _{i \in I}$ in the opposite $\infty $-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$